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Introduction

P 
hysics as a general discipline has no limits, from the very huge (galaxy-
wide) to the very small (atoms and smaller). This book is about the very 

small side of things — that’s the specialty of quantum physics. When you quan-
tize something, you can’t go any smaller; you’re dealing with discrete units.

Classical physics is terrific at explaining things like heating cups of coffee or 
accelerating down ramps or cars colliding, as well as a million other things, 
but it has problems when things get very small. Quantum physics usually 
deals with the micro world, such as what happens when you look at individual 
electrons zipping around. For example, electrons can exhibit both particle and 
wave-like properties, much to the consternation of experimenters — and it 
took quantum physics to figure out the full picture.

Quantum physics also introduced the uncertainty principle, which says you 
can’t know a particle’s exact position and momentum at the same time. And 
the field explains the way that the energy levels of the electrons bound in 
atoms work. Figuring out those ideas all took quantum physics, as physicists 
probed ever deeper for a way to model reality. Those topics are all coming 
up in this book.

About This Book
Because uncertainty and probability are so important in quantum physics, 
you can’t fully appreciate the subject without getting into calculus. This book 
presents the need-to-know concepts, but you don’t see much in the way of 
thought experiments that deal with cats or parallel universes. I focus on the 
math and how it describes the quantum world.

I’ve taught physics to many thousands of students at the university level, 
and from that experience, I know most of them share one common trait: 
Confusion as to what they did to deserve such torture.

Quantum Physics For Dummies, Revised Edition largely maps to a college 
course, but this book is different from standard texts. Instead of writing it from 
the physicist’s or professor’s point of view, I’ve tried to write it from the read-
er’s point of view. In other words, I’ve designed this book to be crammed full of 
the good stuff — and only the good stuff. Not only that, but you can discover 
ways of looking at things that professors and teachers use to make figuring out 
problems simple.
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Although I encourage you to read this book from start to finish, you can also 
leaf through this book as you like, reading the topics that you find interest-
ing. Like other For Dummies books, this one lets you skip around as you like 
as much as possible. You don’t have to read the chapters in order if you 
don’t want to. This is your book, and quantum physics is your oyster.

Conventions Used in This Book
Some books have a dozen dizzying conventions that you need to know before 
you can even start. Not this one. Here’s all you need to know:

 ✓ I put new terms in italics, like this, the first time they’re discussed; 
I follow them with a definition.

 ✓ Vectors — those items that have both a magnitude and a direction — 
are given in bold, like this: B.

 ✓ Web addresses appear in monofont.

Foolish Assumptions
I don’t assume that you have any knowledge of quantum physics when you 
start to read this book. However, I do make the following assumptions:

 ✓ You’re taking a college course in quantum physics, or you’re interested 
in how math describes motion and energy on the atomic and subatomic 
scale.

 ✓ You have some math prowess. In particular, you know some calculus. 
You don’t need to be a math pro, but you should know how to perform 
integration and deal with differential equations. Ideally, you also have 
some experience with Hilbert space.

 ✓ You have some physics background as well. You’ve had a year’s worth 
of college-level physics (or understand all that’s in Physics For Dummies) 
before you tackle this one.

How This Book Is Organized
Quantum physics — the study of very small objects — is actually a very big 
topic. To handle it, quantum physicists break the world down into different 
parts. Here are the various parts that are coming up in this book.
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Part I: Small World, Huh? Essential 
Quantum Physics
Part I is where you start your quantum physics journey, and you get a good 
overview of the topic here. I survey quantum physics and tell you what it’s 
good for and what kinds of problems it can solve. You also get a good foun-
dation in the math that you need for the rest of the book, such as state vec-
tors and quantum matrix manipulations. Knowing this stuff prepares you to 
handle the other parts.

Part II: Bound and Undetermined: 
Handling Particles in Bound States
Particles can be trapped inside potentials; for instance, electrons can be 
bound in an atom. Quantum physics excels at predicting the energy levels of 
particles bound in various potentials, and that’s what Part II covers. You see 
how to handle particles bound in square wells and in harmonic oscillators.

Part III: Turning to Angular  
Momentum and Spin
Quantum physics lets you work with the micro world in terms of the angu- 
lar momentum of particles, as well as the spin of electrons. Many famous 
experiments — such as the Stern-Gerlach experiment, in which beams of par-
ticles split in magnetic fields — are understandable only in terms of quantum 
physics, and you get all the details here.

Part IV: Multiple Dimensions: Going 3D 
with Quantum Physics
In the first three parts, all the quantum physics problems are one-dimensional  
to make life a little easier while you’re understanding how to solve those 
problems. In Part IV, you branch out to working with three-dimensional prob-
lems in both rectangular and spherical coordinate systems. Taking things 
from 1D to 3D gives you a better picture of what happens in the real world.
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Part V: Group Dynamics: Introducing 
Multiple Particles
In this part, you work with multiple-particle systems, such as atoms and 
gases. You see how to handle many electrons in atoms, particles interacting 
with other particles, and particles that scatter off other particles.

Dealing with multiple particles is all another step in modeling reality — after 
all, systems with only a single particle don’t take you very far in the real 
world, which is built of mega, mega systems of particles. In Part V, you see 
how quantum physics can handle the situation.

Part VI: The Part of Tens
You see the Part of the Tens in all For Dummies books. This part is made 
up of fast-paced lists of ten items each. You get to see some of the ten best 
online tutorials on quantum physics and a discussion of quantum physics’ 
ten greatest triumphs.

Icons Used in This Book
You find a handful of icons in this book, and here’s what they mean:

 This icon flags particularly good advice, especially when you’re solving  
problems.

 This icon marks something to remember, such as a law of physics or a particu-
larly juicy equation.

 This icon means that what follows is technical, insider stuff. You don’t have to 
read it if you don’t want to, but if you want to become a quantum physics pro 
(and who doesn’t?), take a look.

 This icon helps you avoid mathematical or conceptual slip-ups.
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Where to Go from Here
All right, you’re all set and ready to go. You can jump in anywhere you  
like. For instance, if you’re sure electron spin is going to be a big topic of  
conversation at a party this weekend, check out Chapter 6. And if your 
upcoming vacation to Geneva, Switzerland, includes a side trip to your new 
favorite particle accelerator — the Large Hadron Collider — you can flip to 
Chapter 12 and read up on scattering theory. But if you want to get the full 
story from the beginning, jump into Chapter 1 first — that’s where the action 
starts.
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Part I
Small World, Huh? 
Essential Quantum 

Physics



In this part . . . 

T 
his part is designed to give you an introduction to the 
ways of quantum physics. You see the issues that 

gave rise to quantum physics and the kinds of solutions it 
provides. I also introduce you to the kind of math that 
quantum physics requires, including the notion of state 
vectors.



Chapter 1

Discoveries and Essential 
Quantum Physics

In This Chapter
▶ Putting forth theories of quantization and discrete units

▶ Experimenting with waves acting as particles

▶ Experimenting with particles acting as waves

▶ Embracing uncertainty and probability

A 
ccording to classical physics, particles are particles and waves are 
waves, and never the twain shall mix. That is, particles have an energy 

E and a momentum vector p, and that’s the end of it. And waves, such as light 
waves, have an amplitude A and a wave vector k (where the magnitude of k = 

, where λ is the wavelength) that points in the direction the wave is trav-

eling. And that’s the end of that, too, according to classical physics.

But the reality is different — particles turn out to exhibit wave-like proper-
ties, and waves exhibit particle-like properties as well. The idea that waves 
(like light) can act as particles (like electrons) and vice versa was the major 
revelation that ushered in quantum physics as such an important part of the 
world of physics. This chapter takes a look at the challenges facing classical 
physics around the turn of the 20th century — and how quantum physics 
gradually came to the rescue. Up to that point, the classical way of looking 
at physics was thought to explain just about everything. But as those pesky 
experimental physicists have a way of doing, they came up with a bunch of 
experiments that the theoretical physicists couldn’t explain.

That made the theoretical physicists mad, and they got on the job. The prob-
lem here was the microscopic world — the world that’s too tiny to see. On 
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the larger scale, classical physics could still explain most of what was going 
on — but when it came to effects that depended on the micro-world, classi-
cal physics began to break down. Taking a look at how classical physics col-
lapsed gives you an introduction to quantum physics that shows why people 
needed it.

Being Discrete: The Trouble  
with Black-Body Radiation

One of the major ideas of quantum physics is, well, quantization — measuring 
quantities in discrete, not continuous, units. The idea of quantized energies 
arose with one of the earliest challenges to classical physics: the problem of 
black-body radiation.

When you heat an object, it begins to glow. Even before the glow is visible, 
it’s radiating in the infrared spectrum. The reason it glows is that as you heat 
it, the electrons on the surface of the material are agitated thermally, and 
electrons being accelerated and decelerated radiate light.

Physics in the late 19th and early 20th centuries was concerned with the 
spectrum of light being emitted by black bodies. A black body is a piece of 
material that radiates corresponding to its temperature — but it also absorbs 
and reflects light from its surroundings. To make matters easier, physics pos-
tulated a black body that reflected nothing and absorbed all the light falling 
on it (hence the term black body, because the object would appear perfectly 
black as it absorbed all light falling on it). When you heat a black body, it 
would radiate, emitting light.

Well, it was hard to come up with a physical black body — after all, what 
material absorbs light 100 percent and doesn’t reflect anything? But the 
physicists were clever about this, and they came up with the hollow cavity 
you see in Figure 1-1, with a hole in it.

When you shine light on the hole, all that light would go inside, where it 
would be reflected again and again — until it got absorbed (a negligible 
amount of light would escape through the hole). And when you heated the 
hollow cavity, the hole would begin to glow. So there you have it — a pretty 
good approximation of a black body.
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Figure 1-1:  
A black 

body.
 

Hole

You can see the spectrum of a black body (and attempts to model that spec-
trum) in Figure 1-2, for two different temperatures, T1 and T2. The problem 
was that nobody was able to come up with a theoretical explanation for the 
spectrum of light generated by the black body. Everything classical physics 
could come up with went wrong.

 

Figure 1-2: 
Black-body 

radiation 
spectrum.
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First attempt: Wien’s Formula
The first one to try to explain the spectrum of a black body was Wilhelm 
Wien, in 1889. Using classical thermodynamics, he came up with this formula:

where u (υ, T) is the intensity distribution of the light spectrum at frequency 
υ of a black body at the temperature T, and A and β are constants which can 
be measured in experiments. (The spectrum is given by u[υ, T], which is the 
energy density of the emitted light as a function of frequency and tempera-
ture.)

This equation, Wien’s formula, worked fine for high frequencies, as you can 
see in Figure 1-2; however, it failed for low frequencies.

Second attempt: Rayleigh-Jeans Law
Next up in the attempt to explain the black-body spectrum was the Rayleigh-
Jeans Law, introduced around 1900. This law predicted that the spectrum of 
a black body was

where k is Boltzmann’s constant (approximately 1.3807 × 10–23 J·K–1). However, 
the Rayleigh-Jeans Law had the opposite problem of Wien’s law: Although it 
worked well at low frequencies (see Figure 1-2), it didn’t match the higher- 
frequency data at all — in fact, it diverged at higher frequencies. This was 
called the ultraviolet catastrophe because the best predictions available 
diverged at high frequencies (corresponding to ultraviolet light). It was time 
for quantum physics to take over.

An intuitive (quantum) leap:  
Max Planck’s spectrum
The black-body problem was a tough one to solve, and with it came the first begin- 
nings of quantum physics. Max Planck came up with a radical suggestion —  
what if the amount of energy that a light wave can exchange with matter 
wasn’t continuous, as postulated by classical physics, but discrete? In other 
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words, Planck postulated that the energy of the light emitted from the walls 
of the black-body cavity came only in integer multiples like this, where h is a 
universal constant:

With this theory, crazy as it sounded in the early 1900s, Planck converted the 
continuous integrals used by Rayleigh-Jeans to discrete sums over an infinite 
number of terms. Making that simple change gave Planck the following equa-
tion for the spectrum of black-body radiation:

This equation got it right — it exactly describes the black-body spectrum, 
both at low and high (and medium, for that matter) frequencies.

This idea was quite new. What Planck was saying was that the energy of 
the radiating oscillators in the black body couldn’t take on just any level of 
energy, as classical physics allows; it could take on only specific, quantized 
energies. In fact, Planck hypothesized that that was true for any oscillator — 
that its energy was an integral multiple of hυ.

 And so Planck’s equation came to be known as Planck’s quantization rule, and 
h became Planck’s constant: h = 6.626 × 10–34 Joule-seconds. Saying that the 
energy of all oscillators was quantized was the birth of quantum physics.

One has to wonder how Planck came up with his theory, because it’s not 
an obvious hypothesis. Oscillators can oscillate only at discrete energies? 
Where did that come from? In any case, the revolution was on — and there 
was no stopping it.

The First Pieces: Seeing Light  
as Particles

Light as particles? Isn’t light made up of waves? Light, it turns out, exhibits 
properties of both waves and particles. This section shows you some of the 
evidence.
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Solving the photoelectric effect
The photoelectric effect was one of many experimental results that made up 
a crisis for classical physics around the turn of the 20th century. It was also 
one of Einstein’s first successes, and it provides proof of the quantization of 
light. Here’s what happened.

When you shine light onto metal, as Figure 1-3 shows, you get emitted 
electrons. The electrons absorb the light you shine, and if they get enough 
energy, they’re able to break free of the metal’s surface. According to clas-
sical physics, light is just a wave, and it can exchange any amount of energy 
with the metal. When you beam light on a piece of metal, the electrons in the 
metal should absorb the light and slowly get up enough energy to be emit-
ted from the metal. The idea was that if you were to shine more light onto 
the metal, the electrons should be emitted with a higher kinetic energy. And 
very weak light shouldn’t be able to emit electrons at all, except in a matter 
of hours.

But that’s not what happened — electrons were emitted as soon as someone 
shone light on the metal. In fact, no matter how weak the intensity of the 
incident light (and researchers tried experiments with such weak light that it 
should have taken hours to get any electrons emitted), electrons were emit-
ted. Immediately.

 

Figure 1-3: 
The photo-

electric 
effect.

 

Light
Electrons

Metal

Experiments with the photoelectric effect showed that the kinetic energy, K, of 
the emitted electrons depended only on the frequency — not the intensity — 
of the incident light, as you can see in Figure 1-4.
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Figure 1-4: 
Kinetic 

energy of 
emitted 

electrons 
versus  

frequency  
of the inci-
dent light.

 Frequency

K

υ0 υ

In Figure 1-4, υ0 is called the threshold frequency, and if you shine light with a fre-
quency below this threshold on the metal, no electrons are emitted. The emitted 
electrons come from the pool of free electrons in the metal (all metals have a pool 
of free electrons), and you need to supply these electrons with an energy equiva-
lent to the metal’s work function, W, to emit the electron from the metal’s surface.

The results were hard to explain classically, so enter Einstein. This was the 
beginning of his heyday, around 1905. Encouraged by Planck’s success (see 
the preceding section), Einstein postulated that not only were oscillators 
quantized but so was light — into discrete units called photons. Light, he sug-
gested, acted like particles as well as waves.

So in this scheme, when light hits a metal surface, photons hit the free elec-
trons, and an electron completely absorbs each photon. When the energy, 
hυ, of the photon is greater than the work function of the metal, the electron 
is emitted. That is,

hυ = W + K

where W is the metal’s work function and K is the kinetic energy of the emit-
ted electron. Solving for K gives you the following:

K = hυ – W

You can also write this in terms of the threshold frequency this way:

K = h(υ – υ0)
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So apparently, light isn’t just a wave; you can also view it as a particle, the 
photon. In other words, light is quantized.

That was also quite an unexpected piece of work by Einstein, although it was 
based on the earlier work of Planck. Light quantized? Light coming in discrete 
energy packets? What next?

Scattering light off electrons:  
The Compton effect
To a world that still had trouble comprehending light as particles (see 
the preceding section), Arthur Compton supplied the final blow with the 
Compton effect. His experiment involved scattering photons off electrons, as 
Figure 1-5 shows.

 

Figure 1-5:  
Light  

incident on 
an electron 

at rest.
 

Photon Electron at rest
λ

Incident light comes in with a wavelength of λ and hits the electron at rest. 
After that happens, the light is scattered, as you see in Figure 1-6.

 

Figure 1-6: 
Photon 

scattering 
off an  

electron.
 

Photon θ

λ+Δλ

Electron
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Classically, here’s what should’ve happened: The electron should’ve absorbed  
the incident light, oscillated, and emitted it — with the same wavelength but 
with an intensity depending on the intensity of the incident light. But that’s 
not what happened — in fact, the wavelength of the light is actually changed 
by Δλ, called the wavelength shift. The scattered light has a wavelength of λ 
+ Δλ — in other words, its wavelength has increased, which means the light 
has lost energy. And Δλ depends on the scattering angle, θ, not on the inten-
sity of the incident light.

Arthur Compton could explain the results of his experiment only by making 
the assumption that he was actually dealing with two particles — a photon and 
an electron. That is, he treated light as a discrete particle, not a wave. And he 
made the assumption that the photon and the electron collided elastically — 
that is, that both total energy and momentum were conserved.

Making the assumption that both the light and the electron were particles, 
Compton then derived this formula for the wavelength shift (it’s an easy cal-
culation if you assume that the light is represented by a photon with energy  
E = hυ and that its momentum is p = E/c):

where h is Planck’s constant, me is the mass of an electron, c is the speed of 
light, and θ is the scattering angle of the light.

You also see this equation in the equivalent form:

where λc is the Compton wavelength of an electron, . And experi-
ment confirms this relation — both equations.

Note that to derive the wavelength shift, Compton had to make the assump-
tion that here, light was acting as a particle, not as a wave. That is, the par-
ticle nature of light was the aspect of the light that was predominant.

Proof positron? Dirac and pair production
In 1928, the physicist Paul Dirac posited the existence of a positively charged 
anti-electron, the positron. He did this by taking the newly evolving field of 
quantum physics to new territory by combining relativity with quantum 
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mechanics to create relativistic quantum mechanics — and that was the 
theory that predicted, through a plus/minus-sign interchange — the exis-
tence of the positron.

It was a bold prediction — an anti-particle of the electron? But just four years 
later, physicists actually saw the positron. Today’s high-powered elementary 
particle physics has all kinds of synchrotrons and other particle accelerators 
to create all the elementary particles they need, but in the early 20th century, 
this wasn’t always so.

In those days, physicists relied on cosmic rays — those particles and high-
powered photons (called gamma rays) that strike the Earth from outer space —  
as their source of particles. They used cloud-chambers, which were filled 
with vapor from dry ice, to see the trails such particles left. They put their 
chambers into magnetic fields to be able to measure the momentum of the 
particles as they curved in those fields.

In 1932, a physicist noticed a surprising event. A pair of particles, oppositely 
charged (which could be determined from the way they curved in the mag-
netic field) appeared from apparently nowhere. No particle trail led to the 
origin of the two particles that appeared. That was pair-production — the con-
version of a high-powered photon into an electron and positron, which can 
happen when the photon passes near a heavy atomic nucleus.

So experimentally, physicists had now seen a photon turning into a pair of 
particles. Wow. As if everyone needed more evidence of the particle nature 
of light. Later on, researchers also saw pair annihilation: the conversion of an 
electron and positron into pure light.

Pair production and annihilation turned out to be governed by Einstein’s 
newly introduced theory of relativity — in particular, his most famous for-
mula, E = mc2, which gives the pure energy equivalent of mass. At this point, 
there was an abundance of evidence of the particle-like aspects of light.

A Dual Identity: Looking at  
Particles as Waves

In 1923, the physicist Louis de Broglie suggested that not only did waves 
exhibit particle-like aspects but the reverse was also true — all material par-
ticles should display wave-like properties.
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How does this work? For a photon, momentum , where υ is the 
photon’s frequency and λ is its wavelength. And the wave vector, k, is equal 
to k = p/ℏ, where ℏ = h/2π. De Broglie said that the same relation should hold 
for all material particles. That is,

De Broglie presented these apparently surprising suggestions in his Ph.D. 
thesis. Researchers put these suggestions to the test by sending a beam 
through a dual-slit apparatus to see whether the electron beam would act like 
it was made up of particles or waves. In Figure 1-7, you can see the setup and 
the results.

 

Figure 1-7: 
An electron 
beam going 

through  
two slits.

 

Electrons

a b c

In Figure 1-7a, you can see a beam of electrons passing through a single slit 
and the resulting pattern on a screen. In Figure 1-7b, the electrons are pass-
ing through a second slit. Classically, you’d expect the intensities of Figure 
1-7a and 1-7b simply to add when both slits are open:

I = I1 + I2

But that’s not what happened. What actually appeared was an interference 
pattern when both slits were open (Figure 1-7c), not just a sum of the two 
slits’ electron intensities.
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The result was a validation of de Broglie’s invention of matter waves. 
Experiment bore out the relation that , and de Broglie was a success.

 The idea of matter waves is a big part of what’s coming up in the rest of the 
book. In particular, the existence of matter waves says that you add the 
waves’ amplitude, ψ1(r, t) and ψ2(r, t), not their intensities, to sum them:

ψ(r, t) = ψ1(r, t) + ψ2(r, t)

You square the amplitude to get the intensity, and the phase difference 
between ψ1(r, t) and ψ2(r, t) is what actually creates the interference pattern 
that’s observed.

You Can’t Know Everything (But You 
Can Figure the Odds)

 So particles apparently exhibit wave-like properties, and waves exhibit 
particle-like properties. But if you have an electron, which is it — a wave or a 
particle? The truth is that physically, an electron is just an electron, and you 
can’t actually say whether it’s a wave or a particle. The act of measurement is 
what brings out the wave or particle properties. You see more about this idea 
throughout the book.

Quantum mechanics lives with an uncertain picture quite happily. That view 
offended many eminent physicists of the time — notably Albert Einstein, who 
said, famously, “God does not play dice.” In this section, I discuss the idea of 
uncertainty and how quantum physicists work in probabilities instead.

The Heisenberg uncertainty principle
The fact that matter exhibits wave-like properties gives rise to more trouble —  
waves aren’t localized in space. And knowing that inspired Werner Heisenberg, 
in 1927, to come up with his celebrated uncertainty principle.

You can completely describe objects in classical physics by their momentum 
and position, both of which you can measure exactly. In other words, classi-
cal physics is completely deterministic.

On the atomic level, however, quantum physics paints a different picture. 
Here, the Heisenberg uncertainty principle says that there’s an inherent uncer-
tainty in the relation between position and momentum. In the x direction, for 
example, that looks like this:
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where Δx is the measurement uncertainty in the particle’s x position,  is 
its measurement uncertainty in its momentum in the x direction and ℏ = h/2π.

That is to say, the more accurately you know the position of a particle, the 
less accurately you know the momentum, and vice versa. This relation holds 
for all three dimensions:

And the Heisenberg uncertainty principle is a direct consequence of the 
wave-like nature of matter, because you can’t completely pin down a wave.

 Quantum physics, unlike classical physics, is completely undeterministic.  
You can never know the precise position and momentum of a particle at any 
one time. You can give only probabilities for these linked  
measurements.

Rolling the dice: Quantum physics  
and probability
In quantum physics, the state of a particle is described by a wave function, 
ψ(r, t). The wave function describes the de Broglie wave of a particle, giving 
its amplitude as a function of position and time. (See the earlier section “A 
Dual Identity: Looking at Particles as Waves” for more on de Broglie.)

 Note that the wave function gives a particle’s amplitude, not intensity; if you 
want to find the intensity of the wave function, you have to square it: |ψ(r, t)|2.  
The intensity of a wave is what’s equal to the probability that the particle will 
be at that position at that time.

That’s how quantum physics converts issues of momentum and position into 
probabilities: by using a wave function, whose square tells you the probability 
density that a particle will occupy a particular position or have a particular 
momentum. In other words, |ψ(r, t)|2d3r is the probability that the particle 
will be found in the volume element d3r, located at position r at time t.
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Besides the position-space wave function ψ(r, t), there’s also a momentum-
space version of the wave function: ϕ(p, t).

This book is largely a study of the wave function — the wave functions of free 
particles, the wave functions of particles trapped inside potentials, of identi-
cal particles hitting each other, of particles in harmonic oscillation, of light 
scattering from particles, and more. Using this kind of physics, you can pre-
dict the behavior of all kinds of physical systems.



Chapter 2

Entering the Matrix: Welcome 
to State Vectors

In This Chapter
▶ Creating state vectors

▶ Using Dirac notation for state vectors

▶ Working with bras and kets

▶ Understanding matrix mechanics

▶ Getting to wave mechanics

Q 
uantum physics isn’t just about playing around with your particle accel-
erator while trying not to destroy the universe. Sometimes, you get to 

do things that are a little more mundane, like turn lights off and on, perform a 
bit of calculus, or play with dice.

If you’re actually doing physics with those dice (beyond hurling them across 
the room), the lab director won’t even get mad at you. In quantum physics, 
absolute measurements are replaced by probabilities, so you may use dice to 
calculate the probabilities that various numbers will come up. You can then 
assemble those values into a vector (single-column matrix) in Hilbert space 
(a type of infinitely dimensional vector space with some properties that are 
especially valuable in quantum physics).

This chapter introduces how you deal with probabilities in quantum phys-
ics, starting by viewing the various possible states a particle can occupy as 
a vector — a vector of probability states. From there, I help you familiarize 
yourself with some mathematical notations common in quantum physics, 
including bras, kets, matrices, and wave functions. Along the way, you also 
get to work with some important operators.



24 Part I: Small World, Huh? Essential Quantum Physics 

Creating Your Own Vectors  
in Hilbert Space

In quantum physics, probabilities take the place of absolute measurements. 
Say you’ve been experimenting with rolling a pair of dice and are trying to 
figure the relative probability that the dice will show various values. You 
come up with a list indicating the relative probability of rolling a 2, 3, 4, and 
so on, all the way up to 12:

Sum of the Dice Relative Probability (Number of Ways  
 of Rolling a Particular Total)

2 1

3 2

4 3

5 4

6 5

7 6

8 5

9 4

10 3

11 2

12 1

In other words, you’re twice as likely to roll a 3 than a 2, you’re four times as 
likely to roll a 5 than a 2, and so on. You can assemble these relative prob-
abilities into a vector (if you’re thinking of a “vector” from physics, think in 
terms of a column of the vector’s components, not a magnitude and direction) 
to keep track of them easily:
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Okay, now you’re getting closer to the way quantum physics works. You 
have a vector of the probabilities that the dice will occupy various states. 
However, quantum physics doesn’t deal directly with probabilities but rather 
with probability amplitudes, which are the square roots of the probabilities. 
To find the actual probability that a particle will be in a certain state, you add 
wave functions — which are going to be represented by these vectors — and 
then square them (see Chapter 1 for info on why). So take the square root of 
all these entries to get the probability amplitudes:
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That’s better, but adding the squares of all these should add up to a total 
probability of 1; as it is now, the sum of the squares of these numbers is 36, 
so divide each entry by 361/2, or 6:

So now you can get the probability amplitude of rolling any combination from 
2 to 12 by reading down the vector — the probability amplitude of rolling a 2 
is 1/6, of rolling a 3 is 

 and so on.

Making Life Easier with Dirac Notation
When you have a state vector that gives the probability amplitude that a pair 
of dice will be in their various possible states, you basically have a vector in 
dice space — all the possible states that a pair of dice can take, which is an 
11-dimensional space. (See the preceding section for more on state vectors.)

But in most quantum physics problems, the vectors can be infinitely large — for 
example, a moving particle can be in an infinite number of states. Handling 
large arrays of states isn’t easy using vector notation, so instead of explicitly 
writing out the whole vector each time, quantum physics usually uses the 
notation developed by physicist Paul Dirac — the Dirac or bra-ket notation.
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Abbreviating state vectors as kets
Dirac notation abbreviates the state vector as a ket, like this: |ψ >. So in the 
dice example, you can write the state vector as a ket this way:

Here, the components of the state vector are represented by numbers in 
11-dimensional dice space. More commonly, however, each component rep-
resents a function of position and time, something like this:
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 In general, a set of vectors ϕN in Hilbert space is linearly independent if the 
only solution to the following equation is that all the coefficients an = 0:

That is, as long as you can’t write any one vector as a linear combination of 
the others, the vectors are linearly independent and so form a valid basis in 
Hilbert space.

Writing the Hermitian conjugate as a bra
For every ket, there’s a corresponding bra. (The terms come from bra-ket, or 
bracket, which should be clearer in the upcoming section titled “Grooving 
with Operators.”) A bra is the Hermitian conjugate of the corresponding ket. 

Suppose you start with this ket:

The * symbol means the complex conjugate. (A complex conjugate flips the 
sign connecting the real and imaginary parts of a complex number.) So the 
corresponding bra, which you write as <ψ|, equals |ψ>T*. The bra is this row 
vector:
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 Note that if any of the elements of the ket are complex numbers, you have to 
take their complex conjugate when creating the associated bra. For instance, if 
your complex number in the ket is a + bi, its complex conjugate in the bra is a 
– bi.

Multiplying bras and kets:  
A probability of 1
You can take the product of your ket and bra, denoted as <ψ|ψ>, like this:

This is just matrix multiplication, and the result is the same as taking the sum 
of the squares of the elements:

  

 And that’s the way it should be, because the total probability should add up to 
1. Therefore, in general, the product of the bra and ket equals 1:

If this relation holds, the ket |ψ> is said to be normalized.
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Covering all your bases: Bras and kets  
as basis-less state vectors
The reason ket notation, |ψ>, is so popular in quantum physics is that it 
allows you to work with state vectors in a basis-free way. In other words, 
you’re not stuck in the position basis, the momentum basis, or the energy 
basis. That’s helpful, because most of the work in quantum physics takes 
place in abstract calculations, and you don’t want to have to drag all the com-
ponents of state vectors through those calculations (often you can’t — there 
may be infinitely many possible states in the problem you’re dealing with).

For example, say that you’re representing your states using position vectors 
in a three-dimensional Hilbert space — that is, you have x, y, and z axes, 
forming a position basis for your space. That’s fine, but not all your calcula-
tions have to be done using that position basis.

You may want to, for example, represent your states in a three-dimensional 
momentum space, with three axes in Hilbert space, px, py, and pz. Now you’d 
have to change all your position vectors to momentum vectors, adjust-
ing each component, and keep track of what happens to every component 
through all your calculations.

So Dirac’s bra-ket notation comes to the rescue here — you use it to perform 
all the math and then plug in the various components of your state vectors as 
needed at the end. That is, you can perform your calculations in purely sym-
bolic terms, without being tied to a basis.

And when you need to deal with the components of a ket, such as when you want 
to get physical answers, you can also convert kets to a different basis by taking 
the ket’s components along the axes of that basis. Generally, when you have a 
vector|ψ>, you can express it as a sum over N basis vectors, |ϕi, like so:

          
where N is the dimension of the Hilbert space, and i is an integer that labels 
the basis vectors.

Understanding some relationships  
using kets
Ket notation makes the math easier than it is in matrix form because you can 
take advantage of a few mathematical relationships. For example, here’s the 
so-called Schwarz inequality for state vectors:

< > ≤ < >< >ψ φ ψ ψ φ φ
2



31 Chapter 2: Entering the Matrix: Welcome to State Vectors

This says that the square of the absolute value of the product of two state 
vectors, |<ψ|ϕ>|2, is less than or equal to <ψ|ψ><ϕ|ϕ>. This turns out the be 
the analog of the vector inequality:

So why is the Schwarz inequality so useful? It turns out that you can derive 
the Heisenberg uncertainty principle from it (see Chapter 1 for more on this 
principle).

Other ket relationships can also simplify your calculations. For instance, two 
kets, |ψ> and |ϕ>, are said to be orthogonal if

And two kets are said to be orthonormal if they meet the following conditions:

 ✓ 

 ✓ 

 ✓ 

With this information in mind, you’re now ready to start working with operators.

Grooving with Operators
What about all the calculations that you’re supposed to be able to perform 
with kets? Taking the product of a bra and a ket, <ψ|ϕ>, is fine as far as it 
goes, but what about extracting some physical quantities you can measure? 
That’s where operators come in. 

Hello, operator: How operators work
Here’s the general definition of an operator A in quantum physics: An opera-
tor is a mathematical rule that, when operating on a ket, |ψ>, transforms that 
ket into a new ket, |ψ'> in the same space (which could just be the old ket 
multiplied by a scalar). So when you have an operator A, it transforms kets 
like this:
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For that matter, the same operator can also transform bras:

 Here are several examples of the kinds of operators you’ll see:

 ✓ Hamiltonian (H): Applying the Hamiltonian operator (which looks differ-
ent for every different physical situation) gives you E, the energy of the 
particle represented by the ket |ψ>; E is a scalar quantity:

  
H Eψ ψ> = >

 ✓ Unity or identity ( I ): The unity or identity operator leaves kets 
unchanged:

  
I ψ ψ> = >

 ✓ Gradient (∇ ): The gradient operator works like this:

  

 ✓ Linear momentum (P): The linear momentum operator looks like this in 
quantum mechanics:

  

 ✓ Laplacian : You use the Laplacian operator, which is much like a 
second-order gradient, to create the energy-finding Hamiltonian opera-
tor:

  

 In general, multiplying operators together is not the same independent of 
order, so for the operators A and B, AB ≠ BA.

And an operator A is said to be linear if
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I expected that: Finding  
expectation values
Given that everything in quantum physics is done in terms of probabilities, 
making predictions becomes very important. And the biggest such prediction 
is the expectation value. The expectation value of an operator is the aver-
age value that you would measure if you performed the measurement many 
times. For example, the expectation value of the Hamiltonian operator (see 
the preceding section) is the average energy of the system you’re studying.

 The expectation value is a weighted average of the probabilities of the sys-
tem’s being in its various possible states. Here’s how you find the expectation 
value of an operator A:

 

Note that because you can express <ψ| as a row operator and |ψ> as a 
column vector, you can express the operator A as a square matrix.

For example, suppose you’re working with a pair of dice and the probabilities 
of all the possible sums (see the earlier section “Creating Your Own Vectors 
in Hilbert Space”). In this dice example, the expectation value is a sum of 
terms, and each term is a value that can be displayed by the dice, multiplied 
by the probability that that value will appear.

The bra and ket will handle the probabilities, so it’s up to the operator that 
you create for this — call it the Roll operator, R — to store the dice values  
(2 through 12) for each probability. Therefore, the operator R looks like this:
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So to find the expectation value of R, you need to calculate <ψ|R|ψ>. Spelling 
that out in terms of components gives you the following:

Doing the math, you get

So the expectation value of a roll of the dice is 7. Now you can see where the terms 
bra and ket come from — they “bracket” an operator to give you expectation 
values. In fact, the expectation value is such a common thing to find that 
you’ll often find <ψ|R|ψ> abbreviated as <R>, so

< > =R 7

Looking at linear operators
An operator A is said to be linear if it meets the following condition:

For instance, the expression |ϕ><χ| is actually a linear operator. In order for 
us to see this we shall need to know just a little more about what happens 
when we take the products of bras and kets. Firstly, if we take the product of 
the bra, <χ|, with the ket, c|ψ>, where c is a complex number, then we get the 
answer,
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Secondly, if we take the product of the bra, <χ|, with the sum of two kets, 
|ψ1> +| ψ2>, then we get the answer,

Now that we know this we can test to see if |ϕ><χ| is actually a linear opera-
tor. OK then, let’s apply |ϕ><χ| to a linear combination of bras, like so,

where c1 and c2 are complex numbers. Now that you know how the product of 
a bra with a sum of two kets goes, you can say,

Then, as you know, <χ|c|ψ> = c<χ|ψ>, you can finally write this as,

This is exactly what a linear operator should do — if you replace A in the 
above equation defining a linear operator, with |ϕ><χ|, then the result is 
the same as the one you just found. So |ϕ><χ| is indeed a linear operator — 
though I would agree, it’s a pretty funny looking one! 
 

Going Hermitian with Hermitian 
Operators and Adjoints
The Hermitian adjoint — also called the adjoint or Hermitian conjugate — of 
an operator A is denoted A†. To find the Hermitian adjoint, follow these steps:

 1. Replace complex constants with their complex conjugates.

  The Hermitian adjoint of a complex number is the complex conjugate of 
that number:
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 2. Replace kets with their corresponding bras, and replace bras with 
their corresponding kets.

  You have to exchange the bras and kets when finding the Hermitian 
adjoint of an operator, so finding the Hermitian adjoint of an operator is 
not just the same as mathematically finding its complex conjugate.

 3. Replace operators with their Hermitian adjoints.

  In quantum mechanics, operators that are equal to their Hermitian 
adjoints are called Hermitian operators. In other words, an operator is 
Hermitian if

  

  Hermitian operators appear throughout the book, and they have spe-
cial properties. For instance, the matrix that represents them may be 
diagonalized — that is, written so that the only nonzero elements appear 
along the matrix’s diagonal. Also, the expectation value of a Hermitian 
operator is guaranteed to be a real number, not complex (see the earlier 
section “I expected that: Finding expectation values”).

 4. Write your final equation.

  

 Here are some relationships concerning Hermitian adjoints:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

 ✓ 

Forward and Backward:  
Finding the Commutator

 The measure of how different it is to apply operator A and then B, versus B 
and then A, is called the operators’ commutator.  Here’s how you define the 
commutator of operators A and B:

[A, B] = AB – BA
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Commuting
Two operators commute with each other if their commutator is equal to zero. 
That is, it doesn’t make any difference in what order you apply them:

[A, B] = 0

Note in particular that any operator commutes with itself:

[A, A] = 0

And it’s easy to show that the commutator of A, B is the negative of the com-
mutator of B, A:

[A, B] = –[B, A]

It’s also true that commutators are linear:

[A, B + C + D + ...] = [A, B] + [A, C] + [A, D] + ...

And the Hermitian adjoint of a commutator works this way:

You can also find the anticommutator, {A, B}:

{A, B} = AB + BA

Finding anti-Hermitian operators
Here’s another one: What can you say about the Hermitian adjoint of the com-
mutator of two Hermitian operators? Here’s the answer. First, write the adjoint:

The definition of commutators tells you the following:
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You know (AB)† = B†A† (see the earlier section “Going Hermitian with 
Hermitian Operators and Adjoints” for properties of adjoints). Therefore,

But for Hermitian operators, A = A†, so remove the † symbols:

But BA – AB is just –[A, B], so you have the following:

 A and B here are Hermitian operators. When you take the Hermitian adjoint of 
an expression and get the same thing back with a negative sign in front of it, 
the expression is called anti-Hermitian, so the commutator of two Hermitian 
operators is anti-Hermitian. (And by the way, the expectation value of an anti-
Hermitian operator is guaranteed to be completely imaginary.)

Starting from Scratch and Ending Up 
with Heisenberg

If you’ve read through the last few sections, you’re now armed with all this 
new technology: Hermitian operators and commutators. How can you put it 
to work? You can come up with the Heisenberg uncertainty relation starting 
virtually from scratch.

Here’s a calculation that takes you from a few basic definitions to the 
Heisenberg uncertainty relation. This kind of calculation shows how much 
easier it is to use the basis-less bra and ket notation than the full matrix ver-
sion of state vectors. This isn’t the kind of calculation that you’ll need to do 
in class, but follow it through — knowing how to use kets, bras, commuta-
tors, and Hermitian operators is vital in the coming chapters.

The uncertainty in a measurement of the Hermitian operator named A is for-
mally given by
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That is, ΔA is equal to the square root of the expectation value of A2 minus 
the squared expectation value of A. If you’ve taken any math classes that 
dealt with statistics, this formula may be familiar to you. Similarly, the uncer-
tainty in a measurement using Hermitian operator B is

Now consider the operators ΔA and ΔB (not the uncertainties ΔA and ΔB any-
more), and assume that applying ΔA and ΔB as operators gives you measure-
ment values like this:

Like any operator, using ΔA and ΔB can result in new kets:

Here’s the key: The Schwarz inequaility (from the earlier section 
“Understanding some relationships using kets”) gives you

 

So you can see that the inequality sign, ≥, which plays a big part in the 
Heisenberg uncertainty relation, has already crept into the calculation.

Because ΔA and ΔB are Hermitian, <χ|χ> is equal to <ψ|ΔA2|ψ> and <ϕ|ϕ> is 
equal to <ψ|ΔB2|ψ>. Because ΔA† = ΔA (the definition of a Hermitian operator), 
you can see that

This means that
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That is, <χ|χ> is equal to <ΔA2> and <ϕ|ϕ > is equal to <ΔB2>. So you can 
rewrite the Schwarz inequality like this:

Okay, where has this gotten you? It’s time to be clever. Note that you can 
write ΔAΔB as

Here, {ΔA, ΔB} = ΔAΔB + ΔBΔA is the anticommutator of the operators ΔA and 
ΔB. Because [ΔA, ΔB] = [A, B] (the constants <A> and <B> subtract out), you 
can rewrite this equation:

Here’s where the math gets intense. Take a look at what you know so far:

 ✓ The commutator of two Hermitian operators, [A, B], is anti-Hermitian.

 ✓ The expectation value of an anti-Hermitian is imaginary.

 ✓ {ΔA, ΔB} is Hermitian.

 ✓ The expectation value of a Hermitian is real.

All this means that you can view the expectation value of the equation as the 
sum of real ({ΔA, ΔB}) and imaginary ([A, B]) parts, so

And because the second term on the right is positive or zero, you can say 
that the following is true:

 

Whew! But now compare this equation to the relationship from the earlier 
use of the Schwarz inequality:
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Combining the two equations gives you this:

This has the look of the Heisenberg uncertainty relation, except for the pesky 
expectation value brackets, < >, and the fact that ΔA and ΔB appear squared 
here. You want to reproduce the Heisenberg uncertainty relation here, which 
looks like this:

Okay, so how do you get the left side of the equation from <ΔA2><ΔB2> to 
ΔAΔB? Because an earlier equation tells you that ΔA = A – <A>, you know the 
following:

Taking the expectation value of the last term in this equation, you get this 
result:

Square the earlier equation ΔA = (<A2> – <A>2)1/2 to get the following:

And comparing that equation to the before it, you conclude that

Cool. That result means that  becomes

This inequality at last means that
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Well, well, well. So the product of two uncertainties is greater than or equal 
to 1/2 the absolute value of the commutator of their respective operators? 
Wow. Is that the Heisenberg uncertainty relation? Well, take a look. In quan-
tum mechanics, the momentum operator looks like this:

 

And the operator for the momentum in the x direction is

So what’s the commutator of the X operator (which just returns the x posi-
tion of a particle) and Px? [X, Px] = iℏ, so from   you get 

this next equation (remember, Δx and Δpx here are the uncertainties in x and 
Δpx, not the operators):

Hot dog! That is the Heisenberg uncertainty relation. (Notice that by deriving 
it from scratch, however, you haven’t actually constrained the physical world 
through the use of abstract mathematics — you’ve merely proved, using a 
few basic assumptions, that you can’t measure the physical world with per-
fect accuracy.)

Eigenvectors and Eigenvalues:  
They’re Naturally Eigentastic!

As you know if you’ve been following along in this chapter, applying an oper-
ator to a ket can result in a new ket:
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 To make things easier, you can work with eigenvectors and eigenvalues (eigen 
is German for “innate” or “natural”). For example, |ψ> is an eigenvector of the 
operator A if

 ✓ The number a is a complex constant

 ✓ 

Note what’s happening here: Applying A to one of its eigenvectors, |ψ>, gives 
you |ψ> back, multiplied by that eigenvector’s eigenvalue, a.

Although a can be a complex constant, the eigenvalues of Hermitian opera-
tors are real numbers, and their eigenvectors are orthogonal (that is, <ψ|ϕ> 
= 0).

Casting a problem in terms of eigenvectors and eigenvalues can make life a 
lot easier because applying the operator to its eigenvectors merely gives you 
the same eigenvector back again, multiplied by its eigenvalue — there’s no 
pesky change of state, so you don’t have to deal with a different state vector.

Take a look at this idea, using the R operator from rolling the dice, which is 
expressed this way in matrix form (see the earlier section “I expected that: 
Finding expectation values” for more on this matrix):

The R operator works in 11-dimensional space and is Hermitian, so there’ll be 
11 orthogonal eigenvectors and 11 corresponding eigenvalues. 

Because R is a diagonal matrix, finding the eigenvectors is easy. You can take 
unit vectors in the eleven different directions as the eigenvectors. Here’s 
what the first eigenvector, ξ1, would look like:



44 Part I: Small World, Huh? Essential Quantum Physics 

And here’s what the second eigenvector, ξ2, would look like:

And so on, up to ξ11: 
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Note that all the eigenvectors are orthogonal.

And the eigenvalues? They’re the numbers you get when you apply the R 
operator to an eigenvector. Because the eigenvectors are just unit vectors in 
all 11 dimensions, the eigenvalues are the numbers on the diagonal of the R 
matrix: 2, 3, 4, and so on, up to 12.

Understanding how they work
 The eigenvectors of a Hermitian operator define a complete set of orthonormal 

vectors — that is, a complete basis for the state space. When viewed in this 
“eigenbasis,” which is built of the eigenvectors, the operator in matrix format is 
diagonal and the elements along the diagonal of the matrix are the eigenvalues.

This arrangement is one of the main reasons working with eigenvectors is so 
useful; your original operator may have looked something like this (Note: Bear in 
mind that the elements in an operator can also be functions, not just numbers):
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By switching to the basis of eigenvectors for the operator, you diagonalize 
the matrix into something more like what you’ve seen, which is much easier 
to work with:

You can see why the term eigen is applied to eigenvectors — they form a 
natural basis for the operator.

If two or more of the eigenvalues are the same, that eigenvalue is said to be 
degenerate. So for example, if three eigenvalues are equal to 6, then the eigen-
value 6 is threefold degenerate.

 Here’s another cool thing: If two Hermitian operators, A and B, commute, and 
if A doesn’t have any degenerate eigenvalues, then each eigenvector of A is 
also an eigenvector of B. (See the earlier section “Forward and Backward: 
Finding the Commutator” for more on commuting.)

Finding eigenvectors and eigenvalues
So given an operator in matrix form, how do you find its eigenvectors and 
eigenvalues? This is the equation you want to solve:

And you can rewrite this equation as the following:
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I represents the identity matrix, with 1s along its diagonal and 0s otherwise:

 The solution to (A – aI) |ψ> = 0 exists only if the determinant of the matrix A – 
aI is 0:

det(A – aI) = 0

Finding eigenvalues
Any values of a that satisfy the equation det(A – aI) = 0 are eigenvalues of the 
original equation. Try to find the eigenvalues and eigenvectors of the follow-
ing matrix:

First, convert the matrix into the form A – aI:

Next, find the determinant:

det(A – aI) = (–1 – a)(–4 – a) + 2

det(A – aI) = a2 + 5a + 6

And this can be factored as follows:

det(A – aI) = a2 + 5a + 6 = (a + 2)(a + 3)

You know that det(A – aI) = 0, so the eigenvalues of A are the roots of this 
equation; namely, a1 = –2 and a2 = –3.
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Finding eigenvectors
How about finding the eigenvectors? To find the eigenvector corresponding 
to a1 (see the preceding section), substitute a1 — the first eigenvalue, –2 — 
into the matrix in the form A – aI:

So you have

Because every row of this matrix equation must be true, you know that ψ1 = 
ψ2. And that means that, up to an arbitrary constant, the eigenvector corre-
sponding to a1 is the following:

Drop the arbitrary constant, and just write this as a matrix:

How about the eigenvector corresponding to a2? Plugging a2, –3, into the 
matrix in A –aI form, you get the following:

Then you have
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So 2ψ1 – ψ2 = 0, and ψ1 = ψ2 ÷ 2. And that means that, up to an arbitrary con-
stant, the eigenvector corresponding to a2 is

Drop the arbitrary constant:

So the eigenvalues of this next matrix operator

are a1 = –2 and a2 = –3. And the eigenvector corresponding to a1 is

The eigenvector corresponding to a2 is

Preparing for the Inversion: Simplifying 
with Unitary Operators

Applying the inverse of an operator undoes the work the operator did:

A–1A = AA–1 = I

Sometimes, finding the inverse of an operator is helpful, such as when you 
want to solve equations like Ax = y. Solving for x is easy if you can find the 
inverse of A: x = A–1y.
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However, finding the inverse of a large matrix often isn’t easy, so quantum 
physics calculations are sometimes limited to working with unitary opera-
tors, U, where the operator’s inverse is equal to its adjoint, U–1 = U†. (To find 
the adjoint of an operator, A, you find the transpose by interchanging the 
rows and columns, AT. Then take the complex conjugate, AT* = A†.) This gives 
you the following equation:

The product of two unitary operators, U and V, is also unitary because

When you use unitary operators, kets and bras transform this way:

 ✓ 

 ✓ 

And you can transform other operators using unitary operators like this:

Note that the preceding equations also mean the following:

 ✓ 

 ✓ 

 ✓ 

 Here are some properties of unitary transformations: 

 ✓ If an operator is Hermitian, then its unitary transformed version, A' = 
UAU†, is also Hermitian.

 ✓ The eigenvalues of A and its unitary transformed version, A' = UAU†, are 
the same.

 ✓ Commutators that are equal to complex numbers are unchanged by uni-
tary transformations: [A', B'] = [A, B].
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Comparing Matrix and Continuous 
Representations

Werner Heisenberg developed the matrix-oriented view of quantum physics 
that you’ve been using so far in this chapter. It’s sometimes called matrix 
mechanics. The matrix representation is fine for many problems, but some-
times you have to go past it, as you’re about to see.

One of the central problems of quantum mechanics is to calculate the energy 
levels of a system. The energy operator is called the Hamilitonian, H, and 
finding the energy levels of a system breaks down to finding the eigenvalues 
of the problem:

Here, E is an eigenvalue of the H operator.

Here’s the same equation in matrix terms:

The allowable energy levels of the physical system are the eigenvalues E, which 
satisfy this equation. These can be found by solving the characteristic polynomial, 
which derives from setting the determinant of the above matrix to zero, like so 

That’s fine if you have a discrete basis of eigenvectors — if the number of 
energy states is finite. But what if the number of energy states is infinite? In 
that case, you can no longer use a discrete basis for your operators and bras 
and kets — you use a continuous basis.



52 Part I: Small World, Huh? Essential Quantum Physics 

Going continuous with calculus
Representing quantum mechanics in a continuous basis is an invention of the 
physicist Erwin Schrödinger. In the continuous basis, summations become 
integrals. For example, take the following relation, where I is the identity 
matrix:

It becomes the following:

And every ket |ψ> can be expanded in a basis of other kets, |ϕn>, like this:

Doing the wave
Take a look at the position operator, R, in a continuous basis. Applying this 
operator gives you r, the position vector:

In this equation, applying the position operator to a state vector returns the 
locations, r, that a particle may be found at. You can expand any ket in the 
position basis like this:

And this becomes

 Here’s a very important thing to understand: ψ(r) = <r|ψ> is the wave function 
for the state vector |ψ> — it’s the ket’s representation in the position basis. 
Or in common terms, it’s just a function where the quantity |ψ(r)|2d3r repre-
sents the probability that the particle will be found in the region d3r at r.
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The wave function is the foundation of what’s called wave mechanics, as 
opposed to matrix mechanics. What’s important to realize is that when you 
talk about representing physical systems in wave mechanics, you don’t use 
the basis-less bras and kets of matrix mechanics; rather, you usually use the 
wave function — that is, bras and kets in the position basis.

Therefore, you go from talking about |ψ> to <r|ψ>, which equals ψ(r). This 
wave function appears a lot in the coming chapters, and it’s just a ket in the 
position basis. So in wave mechanics, H|ψ> = E|ψ > becomes the following:

You can write this as the following:

But what is <r|H|ψ>? It’s equal to Hψ(r). The Hamiltonian operator, H, is the 
total energy of the system, kinetic (p2/2m) plus potential (V(r)) so you get the 
following equation:

But the momentum operator is

Therefore, substituting the momentum operator for p gives you this:

Using the Laplacian operator, you get this equation:

You can rewrite this equation as the following (called the Schrödinger equation):
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So in the wave mechanics view of quantum physics, you’re now working with 
a differential equation instead of multiple matrices of elements. This all came 
from working in the position basis, ψ(r) = <r|ψ> instead of just |ψ>.

The quantum physics in the rest of the book is largely about solving this dif-
ferential equation for a variety of potentials, V(r). That is, your focus is on 
finding the wave function that satisfies the Schrödinger equation for various 
physical systems. When you solve the Schrödinger equation for ψ(r), you can 
find the allowed energy states for a physical system, as well as the probabil-
ity that the system will be in a certain position state. 

Note that, besides wave functions in the position basis, you can also give a 
wave function in the momentum basis, ψ(p), or in any number of other bases. 

 The Heisenberg technique of matrix mechanics is one way of working with 
quantum physics, and it’s best used for physical systems with well-defined 
energy states, such as harmonic oscillators. The Schrödinger way of looking at 
things, wave mechanics, uses wave functions, mostly in the position basis, to 
reduce questions in quantum physics to a differential equation.



Part II
Bound and 

Undetermined: 
Handling Particles 

in Bound States



In this part . . .

T 
his part is where you get the lowdown on one of quan-
tum physics’ favorite topics: solving the energy levels 

and wave functions for particles trapped in various bound 
states. For example, you may have a particle trapped in a 
square well, which is much like having a pea in a box. Or 
you may have a particle in harmonic oscillation. Quantum 
physics is expert at handling those kinds of situations.



Chapter 3

Getting Stuck in Energy Wells
In This Chapter
▶ Understanding potential wells

▶ Working with infinite square wells

▶ Determining energy levels

▶ Trapping particles with potential barriers

▶ Handling free particles

W 
hat’s that, Lassie? Stuck in an energy well? Go get help! In this chap-
ter, you get to see quantum physics at work, solving problems in 

one dimension. You see particles trapped in potential wells and solve for the 
allowable energy states using quantum physics. That goes against the grain 
in classical physics, which doesn’t restrict trapped particles to any particular 
energy spectrum. But as you know, when the world gets microscopic, quan-
tum physics takes over.

The equation of the moment is the Schrödinger equation (derived in Chapter 2),  
which lets you solve for the wave function, ψ(x), and the energy levels, E:

   

Looking into a Square Well
A square well is a potential (that is, a potential energy well) that forms a 
square shape, as you can see in Figure 3-1.
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Figure 3-1:  
A square 

well.
 

V

x
a
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The potential, or V(x), goes to infinity at x < 0 and x > a (where x is distance), 
like this:

 ✓ V(x) = ∞, where x < 0

 ✓ V(x) = 0, where 0 ≤ x ≤ a

 ✓ V(x) = ∞, where x > a

Using square wells, you can trap particles. If you put a particle into a square 
well with a limited amount of energy, it’ll be trapped because it can’t over-
come the infinite potential at either side of the square well. Therefore, the 
particle has to move inside the square well.

So does the particle just sort of roll around on the bottom of the square well? 
Not exactly. The particle is in a bound state, and its wave function depends 
on its energy. The wave function isn’t complicated:
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So you have the allowed wave functions for the states n = 1, 2, 3, and so on. 
The energy of the allowable bound states are given by the following equation:

  

The rest of this chapter shows you how to solve problems like this one.

Trapping Particles in Potential Wells
Take a look at the potential in Figure 3-2. Notice the dip, or well, in the poten-
tial, which means that particles can be trapped in it if they don’t have too 
much energy.

The particle’s kinetic energy summed with its potential energy is a constant, 
equal to its total energy:

  

If its total energy is less than V1, the particle will be trapped in the potential 
well, you see in Figure 3-2; to get out of the well, the particle’s kinetic energy 
would have to become negative to satisfy the equation, which is impossible.

 

Figure 3-2: 
A potential 

well.
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In this section, you take a look at the various possible states that a par-
ticle with energy E can take in the potential given by Figure 3-2. Quantum-
mechanically speaking, those states are of two kinds — bound and unbound. 
This section looks at them in overview.

Binding particles in potential wells
Bound states happen when the particle isn’t free to travel to infinity — it’s as 
simple as that. In other words, the particle is confined to the potential well. 

A particle traveling in the potential well you see in Figure 3-2 is bound if its 
energy, E, is less than both V1 and V2. In that case, the particle moves (in a 
classical approximation) between x1 and x2. A particle trapped in such a well 
is represented by a wave function, and you can solve the Schrödinger equa-
tion for the allowed wave functions and the allowed energy states. You need 
to use two boundary conditions (the Schrödinger equation is a second-order 
differential equation) to solve the problem completely.

 Bound states are discrete — that is, they form an energy spectrum of discrete 
energy levels. The Schrödinger equation gives you those states. In addition, 
in one-dimensional problems, the energy levels of a bound state are not 
 degenerate — that is, no two energy levels are the same in the entire energy 
spectrum.

Escaping from potential wells
If a particle’s energy, E, is greater than the potential V1 in Figure 3-2, the par-
ticle can escape from the potential well. There are two possible cases:  
V1 < E < V2 and E > V2. This section looks at them separately.

Case 1: Energy between the two potentials (V1 < E < V2)
If V1 < E < V2, the particle in the potential well has enough energy to over-
come the barrier on the left but not on the right. The particle is thus free to 
move to negative infinity, so its allowed x region is between –∞ and x1.

Here, the allowed energy values are continuous, not discrete, because the par-
ticle isn’t completely bound. The energy eigenvalues are not degenerate —  
that is, no two energy eigenvalues are the same (see Chapter 2 for more on 
eigenvalues).

The Schrödinger equation is a second-order differential equation, so it has 
two linearly independent solutions; however, in this case, only one of those 
solutions is physical and doesn’t diverge.
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The wave equation in this case turns out to oscillate for x < x2 and to decay 
rapidly for x > x2.

Case 2: Energy greater than the higher potential (E > V2)
If E > V2, the particle isn’t bound at all and is free to travel from negative infin-
ity to positive infinity.

The energy spectrum is continuous and the wave function turns out to be a 
sum of a function moving to the right and one moving to the left. The energy 
levels of the allowed spectrum are therefore doubly degenerate.

That’s all the overview you need — time to start solving the Schrödinger 
equation for various different potentials, starting with the easiest of all: infi-
nite square wells.

Trapping Particles in Infinite  
Square Potential Wells

Infinite square wells, in which the walls go to infinity, are a favorite in physics 
problems. You explore the quantum physics take on these problems in this 
section.

Finding a wave-function equation
Take a look at the infinite square well that appears back in Figure 3-1. Here’s 
what that square well looks like:

 ✓ V(x) = ∞, where x < 0

 ✓ V(x) = 0, where 0 ≤ x ≤ a

 ✓ V(x) = ∞, where x > a

The Schrödinger equation looks like this in three dimensions:

  

Writing out the Schrödinger equation gives you the following:
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You’re interested in only one dimension — x (distance) — in this chapter, so 
the Schrödinger equation looks like

  

Because V(x) = 0 inside the well, the equation becomes

  

And in problems of this sort, the equation is usually written as

  

where  (k is the wave number).

So now you have a second-order differential equation to solve for the wave 
function of a particle trapped in an infinite square well.

You get two independent solutions because this equation is a second-order 
differential equation:

ψ1(x) = A sin(kx)

ψ2(x) = B cos(kx)

A and B are constants that are yet to be determined.

 The general solution of 
 
is the sum of 

 
ψ(x) = A sin(kx) + B cos(kx)

Determining the energy levels
The equation ψ(x) = A sin(kx) + B cos(kx) tells you that you have to use the 
boundary conditions to find the constants A and B (the preceding section 
explains how to derive the equation). What are the boundary conditions? The 
wave function must disappear at the boundaries of an infinite square well, so

 ✓ ψ(0) = 0

 ✓ ψ(a) = 0
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The fact that ψ(0) = 0 tells you right away that B must be zero because 
cos(0) = 1. And the fact that ψ(a) = 0 tells you that ψ(a) = A sin(ka) = 0. 
Because sine is zero when its argument is a multiple of π, this means that

ka = nπ  n = 1, 2, 3 ...

Note that although n = 0 is technically a solution, it yields ψ(x) = 0 for all x, 
which is not normalizable, so it’s not a physical solution — the physical  
solutions begin with n = 1.

This equation can also be written as

And because k2 = 2mE/ℏ2, you have the following equation, where n = 1, 2,  
3, ... — those are the allowed energy states. These are quantized states, 
 corresponding to the quantum numbers 1, 2, 3, and so on:

       

Note that the first physical state corresponds to n = 1, which gives you this 
next equation:

This is the lowest physical state that the particles can occupy. Just for kicks, 
put some numbers into this, assuming that you have an electron, mass 9.11 × 
10–31 kilograms, confined to an infinite square well of width of the order of the 
Bohr radius (the average radius of an electron’s orbit in a hydrogen atom); 
let’s say a = 3.00 x 10–10 meters. 

 gives you this energy for the ground state:
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That’s a very small amount, about 4.2 electron volts (eV — the amount of 
energy one electron gains falling through 1 volt). Even so, it’s already on the 
order of the energy of the ground state of an electron in the ground state of 
a hydrogen atom (13.6 eV), so you can say you’re certainly in the right quan-
tum physics ballpark now.

Normalizing the wave function
Okay, you have this for the wave equation for a particle in an infinite square 
well:

The wave function is a sine wave, going to zero at x = 0 and x = a. You can see 
the first two wave functions plotted in Figure 3-3.

 

Figure 3-3: 
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Normalizing the wave function lets you solve for the unknown constant A. In 
a normalized function, the probability of finding the particle between x and 
dx, |ψ(x)|2dx, adds up to 1 when you integrate over the whole square well,  
x = 0 to x = a:

Substituting for ψ(x) gives you the following:

Here’s what the integral in this equation equals:

So from the previous equation, . Solve for A:

Therefore, here’s the normalized wave equation with the value of A plugged in:

And that’s the normalized wave function for a particle in an infinite square well.

Adding time dependence  
to wave functions
Now how about seeing how the wave function for a particle in an infinite 
square well evolves with time? The Schrödinger equation looks like this:
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You can also write the Schrödinger equation this way, where H is the 
Hermitian Hamiltonian operator: 

Hψ(r) = Eψ(r)  

That’s actually the time-independent Schrödinger equation. The time-dependent 
Schrödinger equation looks like this:

Combining the preceding three equations gives you the following, which is 
another form of the time-dependent Schrödinger equation:

And because you’re dealing with only one dimension, x, this equation 
becomes

This is simpler than it looks, however, because the potential doesn’t change 
with time. In fact, because E is constant, you can rewrite the equation as

That equation makes life a lot simpler — it’s easy to solve the time-dependent 
Schrödinger equation if you’re dealing with a constant potential. In this case, 
the solution is

 Neat. When the potential doesn’t vary with time, the solution to the time-
dependent Schrödinger equation simply becomes ψ(x), the spatial part, multi-
plied by e–iEt/ℏ, the time-dependent part.
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So when you add in the time-dependent part to the time-independent wave 
function, you get the time-dependent wave function, which looks like this:

The energy of the nth quantum state is

Therefore, the result is

Shifting to symmetric square  
well potentials
The standard infinite square well looks like this:

 ✓ V(x) = ∞, where x < 0 

 ✓ V(x) = 0, where 0 ≤ x ≤ a

 ✓ V(x) = ∞, where x > a

But what if you want to shift things so that the square well is symmetric around 
the origin instead? That is, you move the square well so that it extends from  
–a/2 to a/2? Here’s what the new infinite square well looks like in this case:

 ✓ V(x) = ∞, where x < –a/2 

 ✓ V(x) = 0, where –a/2 ≤ x ≤ a/2

 ✓ V(x) = ∞, where x > a/2

You can translate from this new square well to the old one by adding a/2 to x, 
which means that you can write the wave function for the new square well in 
this equation like the following:
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Doing a little trig gives you the following equations:

So as you can see, the result is a mix of sines and cosines. The bound states 
are these, in increasing quantum order:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

And so on.

Note that the cosines are symmetric around the origin: ψ(x) = ψ(–x). The 
sines are anti-symmetric: –ψ(x) = ψ(–x).

Limited Potential: Taking a Look at 
Particles and Potential Steps

Truly infinite potentials (which I discuss in the previous sections) are hard 
to come by. In this section, you look at some real-world examples, where 
the potential is set to some finite V0, not infinity. For example, take a look at 
the situation in Figure 3-4. There, a particle is traveling toward a potential 
step. Currently, the particle is in a region where V = 0, but it’ll soon be in the 
region V = V0.
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Figure 3-4: 
A potential 

step, E > V0.
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There are two cases to look at here in terms of E, the energy of the particle:

 ✓ E > V0: Classically, when E > V0, you expect the particle to be able to con-
tinue on to the region x > 0.

 ✓ E < V0: When E < V0, you’d expect the particle to bounce back and not be 
able to get to the region x > 0 at all.

In this section, you start by taking a look at the case where the particle’s 
energy, E, is greater than the potential V0, as shown in Figure 3-4; then you 
take a look at the case where E < V0.

Assuming the particle has  
plenty of energy
Start with the case where the particle’s energy, E, is greater than the poten-
tial V0. From a quantum physics point of view, here’s what the Schrödinger 
equation would look like:

 ✓ For the region x < 0: 

  Here, .
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 ✓ For the region x > 0: 

  In this equation, 
.

In other words, k is going to vary by region, as you see in Figure 3-5.

 

Figure 3-5: 
The value of 
k by region, 
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E > V0.
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Treating the first equation as a second-order differential equation, you can 
see that the most general solution is the following:

ψ1(x) = Aeik1x + Be–ik1x, where x < 0

And for the region x > 0, solving the second equation gives you this:

ψ2(x) = Ceik2x + De–ik2x, where x > 0

Note that eikx represents plane waves traveling in the +x direction, and e–ikx 
represents plane waves traveling in the –x direction.
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What this solution means is that waves can hit the potential step from the  
left and be either transmitted or reflected. Given that way of looking at the 
problem, you may note that the wave can be reflected only going to the right, 
not to the left, so D must equal zero. That makes the wave equation become 
the following:

 ✓ Where x < 0: ψ1(x) = Aeik1x + Be–ik1x 

 ✓ Where x > 0: ψ2(x) = Ceik2x

The term Aeik1x represents the incident wave, Be–ik1x is the reflected wave, and 
Ceik2x is the transmitted wave.

Calculating the probability of reflection or transmission
You can calculate the probability that the particle will be reflected or trans-
mitted through the potential step by calculating the reflection and transmis-
sion coefficients. These are defined in terms of something called the current 
density J(x); this is given in terms of the wave function by

 
 
 
If Jr is the reflected current density, and Ji, is the incident current density, 
then R, the reflection coefficient is

T, the transmission coefficient, is

You now have to calculate Jr , Ji, and Jt. Actually, that’s not so hard — start 
with Ji. Because the incident part of the wave is ψi(x) = Aeik1x, the incident 
current density is

And this just equals . Jr and Jt work in the same way:
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So you have this for the reflection coefficient:

T, the transmission coefficient, is

Finding A, B, and C
So how do you figure out the constants A, B, and C? You do that as you figure 
out the coefficients with the infinite square well potential — with boundary 
conditions (see the earlier section “Trapping Particles in Infinite Square Well 
Potentials”). However, here, you can’t necessarily say that ψ(x) goes to zero, 
because the potential is no longer infinite. Instead, the boundary conditions 
are that ψ(x) and dψ(x)/dx are continuous across the potential step’s bound-
ary. In other words,

 ✓ ψ1(0) = ψ2(0)

 ✓ 

You know the following:

 ✓ Where x < 0: ψ1(x) = Aeik1x + Be–ik1x

 ✓ Where x > 0: ψ2(x) = Ceik2x

Therefore, plugging these two equations into ψ1(0) = ψ2(0) gives you A + B = C. 

And plugging them into  gives you

k1A – k1B = k2C

Solving for B in terms of A gives you this result:

Solving for C in terms of A gives you
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You can then calculate A from the normalization condition of the wave  
function:

But you don’t actually need A, because it drops out of the ratios for the 
reflection and transmission coefficients, R and T. In particular, 

Therefore,

That’s an interesting result, and it disagrees with classical physics, which 
says that there should be no particle reflection at all. As you can see, if k1 ≠ 
k2, then there will indeed be particle reflection.

Note that as k1 goes to k2, R goes to 0 and T goes to 1, which is what you’d 
expect. 

So already you have a result that differs from the classical — the particle can 
be reflected at the potential step. That’s the wave-like behavior of the par-
ticle coming into play again.
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Assuming the particle doesn’t  
have enough energy
Okay, now try the case where E < V0 when there’s a potential step, as shown 
in Figure 3-6. In this case, the particle doesn’t have enough energy to make it 
into the region x > 0, according to classical physics. See what quantum phys-
ics has to say about it.

 

Figure 3-6: 
A potential 

step, E < V0.
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Tackle the region x < 0 first. There, the Schrödinger equation would look 
like this:

where .

You know the solution to this from the previous discussion on potential steps 
(see “Limited Potential: Taking a Look at Particles and Potential Steps”):
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Okay, but what about the region x > 0? That’s a different story. Here’s the 
Schrödinger equation:

where .

But hang on; E – V0 is less than zero, which would make k imaginary, which is 
impossible physically. So change the sign in the Schrödinger equation from 
plus to minus:

And use the following for k2 (note that this is positive if E < V0):

Okay, so now you have to solve the differential 

. There are two linearly independent 

solutions:

 ✓ ψ(x) = Ce–k2x

 ✓ ψ(x) = Dek2x

And the general solution to  is

However, wave functions must be finite everywhere, and the second term 
is clearly not finite as x goes to infinity, so D must equal zero (note that if x 
goes to negative infinity, the first term also diverges, but because the poten-
tial step is limited to x > 0, that isn’t a problem). Therefore, here’s the solu-
tion for x > 0:
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So your wave functions for the two regions are

ψ1(x) = Aeik1x + Be–ik1x     x < 0

ψ2(x) = Ce–k2x            x > 0

Putting this in terms of the incident, reflected, and transmitted wave func-
tions, ψi(x), ψr(x), and ψt(x), you have the following:

 ✓ ψi(x) = Aeik1x 

 ✓ ψr(x) = Be–ik1x     

 ✓ ψt(x) = Ce–k2x     

Finding transmission and reflection coefficients
Now you can figure out the reflection and transmission coefficients, R and 
T (as you do for the case E > V0 in the earlier section “Assuming the particle 
has plenty of energy”):

Actually, this is very easy in this case; take a look at Jt:

But because ψt(x) = Ce–k2x, ψt(x) is completely real, which means that in this 
case, the following is true:

And this equation, of course, is equal to zero.

So Jt = 0; therefore, T = 0. If T = 0, then R must equal 1. That means that you 
have a complete reflection, just as in the classical solution.

The nonzero solution: Finding a particle in x > 0
Despite the complete reflection, there’s a difference between the mathemati-
cal and classical solution: There actually is a nonzero chance of finding the 
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particle in the region x > 0. To see that, take a look at the probability density 
for x > 0, which is

P(x) = |ψt(x)|2

Plugging in for the wave function ψt(x) gives you

P(x) = |ψt(x)|2 = |C|2e–2k2x

You can use the continuity conditions to solve for C in terms of A:

 ✓ ψ1(0) = ψ2(0)

 ✓ 

Using the continuity conditions gives you the following:

This does fall quickly to zero as x gets large, but near x = 0, it has a nonzero 
value.

You can see what the probability density looks like for the E < V0 case of a 
potential step in Figure 3-7.
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Okay, you’ve taken care of infinite square wells and potential steps. Now 
what about the case where the potential step doesn’t extend out to infinity 
but is itself bounded? That brings you to potential barriers, which I discuss in 
the next section.

Hitting the Wall: Particles  
and Potential Barriers

What if the particle could work its way through a potential step — that is, the 
step was of limited extent? Then you’d have a potential barrier, which is set 
up something like this:

 ✓ V(x) = 0, where x < 0

 ✓ V(x) = V0, where 0 ≤ x ≤ a

 ✓ V(x) = 0, where x > a

You can see what this potential looks like in Figure 3-8.
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In solving the Schrödinger equation for a potential barrier, you have to con-
sider two cases, corresponding to whether the particle has more or less 
energy than the potential barrier. In other words, if E is the energy of the 
incident particle, the two cases to consider are E > V0 and E < V0. This section 
starts with E > V0.

Getting through potential  
barriers when E > V0 
In the case where E > V0, the particle has enough energy to pass through the 
potential barrier and end up in the x > a region. This is what the Schrödinger 
equation looks like:

 ✓ For the region x < 0: 

  where 

 ✓ For the region 0 ≤ x ≤ a: 

  where 

 ✓ For the region x > a: 

  where 

The solutions for ψ1(x), ψ2(x), and ψ3(x) are the following:

 ✓ Where x < 0: ψ1(x) = Aeik1x + Be–ik1x     

 ✓ Where 0 ≤ x ≤ a: ψ2(x) = Ceik2x + De–ik2x

 ✓ Where x > a: ψ3(x) = Eeik1x + Fe–ik1x

  In fact, because there’s no leftward traveling wave in the x > a region,  
F = 0, so ψ3(x) = Eeik1x.
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So how do you determine A, B, C, D, and E? You use the continuity condi-
tions, which work out here to be the following:

Okay, from these equations, you get the following:

 ✓ A + B = C + D

 ✓ ik1(A – B) = ik2(C – D)

 ✓ Ceik2a + De–ik2a = Eeik1a

 ✓ ik2Ceik2a – ik2De–ik2a = ik1Eeik1a

So putting all of these equations together, you get this for the coefficient E in 
terms of A:

Wow. So what’s the transmission coefficient, T? Well, T is

And this works out to be

Whew! Note that as k1 goes to k2, T goes to 1, which is what you’d expect.
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So how about R, the reflection coefficient? I’ll spare you the algebra; here’s 
what R equals:

You can see what the E > V0 probability density, |ψ(x)|2, looks like for the 
potential barrier in Figure 3-9.
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That completes the potential barrier when E > V0.

Getting through potential barriers,  
even when E < V0 
What happens if the particle doesn’t have as much energy as the potential  
of the barrier? In other words, you’re now facing the situation you see in 
Figure 3-10.
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Now the Schrödinger equation looks like this:

 ✓ For the region x < 0: ψ1(x) = Aeik1x + Be–ik1x

 ✓ For the region 0 ≤ x ≤ a: 

  where .

  But now E – V0 is less than 0, which would make k imaginary. And that’s 
impossible physically. So change the sign in the Schrödinger equation 
from plus to minus:

  

  And use this for k2: .

 ✓ For the region x > a: 

  where .



83 Chapter 3: Getting Stuck in Energy Wells

All this means that the solutions for ψ1(x), ψ2(x), and ψ3(x) are the following:

 ✓ Where x < 0: ψ1(x) = Aeik1x + Be–ik1x

 ✓ Where 0 ≤ x ≤ a: ψ2(x) = Cek2x + De–k2x     

 ✓ Where x > a: ψ3(x) = Eeik1x + Fe–ik1x

  In fact, there’s no leftward traveling wave in the region x > a; F = 0, so 
ψ3(x) is ψ3(x) = Eeik1x.

This situation is similar to the case where E > V0, except for the region  
0 ≤ x ≤ a. The wave function oscillates in the regions where it has positive 
energy, x < 0 and x > a, but is a decaying exponential in the region 0 ≤ x ≤ a.

You can see what the probability density, |ψ(x)|2, looks like in Figure 3-11.
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Finding the reflection and transmission coefficients
How about the reflection and transmission coefficients, R and T? Here’s what 
they equal:
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As you may expect, you use the continuity conditions to determine A, B, and E:

 ✓ ψ1(0) = ψ2(0)

 ✓ 

 ✓ ψ2(a) = ψ3(a)

 ✓ 

A fair bit of algebra and trig is involved in solving for R and T; here’s what R 
and T turn out to be:

Despite the equation’s complexity, it’s amazing that the expression for T can 
be nonzero. Classically, particles can’t enter the forbidden zone 0 ≤ x ≤ a 
because E < V0, where V0 is the potential in that region; they just don’t have 
enough energy to make it into that area.

Tunneling through
Quantum mechanically, the phenomenon where particles can get through 
regions that they’re classically forbidden to enter is called tunneling. 
Tunneling is possible because in quantum mechanics, particles show wave 
properties.

Tunneling is one of the most exciting results of quantum physics — it means 
that particles can actually get through classically forbidden regions because of 
the spread in their wave functions. This is, of course, a microscopic effect — 
don’t try to walk through any closed doors — but it’s a significant one. Among 
other effects, tunneling makes transistors and integrated circuits possible.

You can calculate the transmission coefficient, which tells you the prob-
ability that a particle gets through, given a certain incident intensity, when 
tunneling is involved. Doing so is relatively easy in the preceding section 
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because the barrier that the particle has to get through is a square barrier. 
But in general, calculating the transmission coefficient isn’t so easy. Read on.

Getting the transmission with the WKB approximation
The way you generally calculate the transmission coefficient is to break up 
the potential you’re working with into a succession of square barriers and to 
sum them. That’s called the Wentzel-Kramers-Brillouin (WKB) approximation — 
treating a general potential, V(x), as a sum of square potential barriers.

The result of the WKB approximation is that the transmission coefficient for 
an arbitrary potential, V(x), for a particle of mass m and energy E is given by 
this expression (that is, as long as V(x) is a smooth, slowly varying function):

So now you can amaze your friends by calculating the probability that a par-
ticle will tunnel through an arbitrary potential. It’s the stuff science fiction is 
made of — well, on the microscopic scale, anyway.

Particles Unbound: Solving the 
Schrödinger Equation for Free Particles

What about particles outside any square well — that is, free particles? There 
are plenty of particles that act freely in the universe, and quantum physics 
has something to say about them.

Here’s the Schrödinger equation:

What if the particle were a free particle, with V(x) = 0? In that case, you’d 
have the following equation:
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And you can rewrite this as

where the wave number, k, is .

You can write the general solution to this Schrödinger equation as

 ψ(x) = Aeikx + Be–ikx

If you add time-dependence to the equation, you get this time-dependent 
wave function:

That’s a solution to the Schrödinger equation, but it turns out to be unphysi-
cal. To see this, note that for either term in the equation, you can’t normalize 
the probability density, |ψ(x)|2 (see the earlier section titled “Normalizing 
the wave function” for more on normalizing):

|ψ(x)|2 = |A|2 or |B|2

What’s going on here? The probability density for the position of the particle 
is uniform throughout all x! In other words, you can’t pin down the particle  
at all.

This is a result of the form of the time-dependent wave function, which uses 
an exact value for the wave number, k — and p = ℏk and E = ℏk2/2m. So what 
that equation says is that you know E and p exactly. And if you know p and E 
exactly, that causes a large uncertainty in x and t — in fact, x and t are com-
pletely uncertain. That doesn’t correspond to physical reality.

For that matter, the wave function ψ(x), as it stands, isn’t something you  
can normalize. Trying to normalize the first term, for example, gives you this 
integral:

And for the first term of ψ(x, t), this is
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And the same is true of the second term in ψ(x, t).

So what do you do here to get a physical particle? The next section explains.

Getting a physical particle  
with a wave packet

 If you have a number of solutions to the Schrödinger equation, any linear 
combination of those solutions is also a solution. So that’s the key to getting 
a physical particle: You add various wave functions together so that you get a 
wave packet, which is a collection of wave functions of the form ei(kx – Et/ℏ) such 
that the wave functions interfere constructively at one location and interfere 
destructively (go to zero) at all other locations:

This is usually written as a continuous integral:

What is ϕ(k, t)? It’s the amplitude of each component wave function, and you 
can find ϕ(k, t) from the Fourier transform of the equation:

Because k = p/ℏ, you can also write the wave packet equations like this, in 
terms of p, not k:
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Well, you may be asking yourself just what’s going on here. It looks like  
ψ(x, t) is defined in terms of ϕ(p, t), but ϕ(p, t) is defined in terms of ψ(x, t). 
That looks pretty circular.

The answer is that the two previous equations aren’t definitions of ψ(x, t) 
or ϕ(p, t); they’re just equations relating the two. You’re free to choose your 
own wave packet shape yourself — for example, you may specify the shape 

of ϕ(p, t), and  would let you find ψ(x, t).

Going through a Gaussian example
Here’s an example in which you get concrete, selecting an actual wave packet 
shape. Choose a so-called Gaussian wave packet, which you can see in  
Figure 3-12 — localized in one place, zero in the others.

 

Figure 3-12: 
A Gaussian 
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x

x, t

The amplitude ϕ(k) you may choose for this wave packet is

You start by normalizing ϕ(k) to determine what A is. Here’s how that works:

Substituting in ϕ(k) gives you this equation:
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Doing the integral (that means looking it up in math tables) gives you the  
following:

Therefore, .

So here’s your wave function:

This little gem of an integral can be evaluated to give you the following:

So that’s the wave function for this Gaussian wave packet (Note: The  
exp[–x2/a2] is the Gaussian part that gives the wave packet the distinctive 
shape that you see in Figure 3-12) — and it’s already normalized.

Now you can use this wave packet function to determine the probability that 
the particle will be in, say, the region 0 ≤ x ≤ a/2. The probability is

In this case, the integral is

And this works out to be

So the probability that the particle will be in the region 0 ≤ x ≤ a/2 is 1/3. Cool!
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Chapter 4

Back and Forth with  
Harmonic Oscillators

In This Chapter
▶ Hamiltonians: Looking at total energy

▶ Solving for energy states with creation and annihilation operators

▶ Understanding the matrix version of harmonic oscillator operators

▶ Writing computer code to solve the Schrödinger equation

H 
armonic oscillators are physics setups with periodic motion, such as 
things bouncing on springs or tick-tocking on pendulums. You’re prob-

ably already familiar with harmonic oscillator problems in the macroscopic 
arena, but now you’re going microscopic. There are many, many physical 
cases that can be approximated by harmonic oscillators, such as atoms in a 
crystal structure.

In this chapter, you see both exact solutions to harmonic oscillator problems 
as well as computational methods for solving them. Knowing how to solve 
the Schrödinger equation using computers is a useful skill for any quantum 
physics expert.

Grappling with the Harmonic  
Oscillator Hamiltonians

Okay, time to start talking Hamiltonians (and I’m not referring to fans of the 
U.S. Founding Father Alexander Hamilton). The Hamiltonian will let you find 
the energy levels of a system. 
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Going classical with harmonic oscillation
In classical terms, the force on an object in harmonic oscillation is the follow-
ing (this is Hooke’s law):

F = –kx

In this equation, k is the spring constant, measured in Newtons/meter, and x 
is displacement. The key point here is that the restoring force on whatever is 
in harmonic motion is proportional to its displacement. In other words, the 
farther you stretch a spring, the harder it’ll pull back.

Because F = ma, where m is the mass of the particle in harmonic motion and 
a is its instantaneous acceleration, you can substitute for F and write this 
equation as

ma + kx = 0

Here’s the equation for instantaneous acceleration, where x is displacement 
and t is time:

  

So substituting for a, you can rewrite the force equation as

  

Dividing by the mass of the particle gives you the following:

  

If you take k/m = ω2 (where ω is the angular frequency), this becomes

  

You can solve this equation for x, where A and B are constants:

x = A sinωt + B cosωt
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Therefore, the solution is an oscillating one because it involves sines and 
cosines, which represent periodic waveforms. 

Understanding total energy  
in quantum oscillation
Now look at harmonic oscillators in quantum physics terms. The Hamiltonian 
(H) is the sum of kinetic and potential energies — the total energy of the 
system:

H = KE + PE

For a harmonic oscillator, here’s what these energies are equal to:

 ✓ The kinetic energy at any one moment is the following, where p is the 
particle’s momentum and m is its mass:

  

 ✓ The particle’s potential energy is equal to the following, where k is the 
spring constant and x is displacement:

  

  (Note: The k is replaced because ω2 = k/m.)

Therefore, in quantum physics terms, you can write the Hamiltonian as H = 
KE + PE, or

  

where P and X are the momentum and position operators.

You can apply the Hamiltonian operator to various eigenstates (see Chapter 
2 for more on eigenstates), |ψ>, of the harmonic oscillator to get the total 
energy, E, of those eigenstates:
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The problem now becomes one of finding the eigenstates and eigenvalues. 
However, this doesn’t turn out to be an easy task. Unlike the potentials 
V(x) covered in Chapter 3, V(x) for a harmonic oscillator is more complex, 
depending as it does on x2.

So you have to be clever. The way you solve harmonic oscillator problems in 
quantum physics is with operator algebra — that is, you introduce a new set 
of operators. And they’re coming up now.

Creation and Annihilation: Introducing 
the Harmonic Oscillator Operators

 Creation and annihilation may sound like big make-or-break the universe kinds 
of ideas, but they play a starring role in the quantum world when you’re work-
ing with harmonic oscillators. You use the creation and annihilation operators 
to solve harmonic oscillator problems  because doing so is a clever way of 
handling the tougher Hamiltonian equation (see the preceding section). Here’s 
what these two new operators do:

 ✓ Creation operator: The creation operator raises the energy level of an 
eigenstate by one level, so if the harmonic oscillator is in the fourth 
energy level, the creation operator raises it to the fifth level.

 ✓ Annihilation operator: The annihilation operator does the reverse, low-
ering eigenstates one level.

These operators make it easier to solve for the energy spectrum without 
a lot of work solving for the actual eigenstates. In other words, you can 
understand the whole energy spectrum by looking at the energy difference 
between eigenstates.

Mind your p’s and q’s: Getting the  
energy state equations
Here’s how people usually solve for the energy spectrum. First, you intro-
duce two new operators, p and q, which are dimensionless; they relate to the 
P (momentum) and X (position) operators this way:

 ✓ 

 ✓ 
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You use these two new operators, p and q, as the basis of the annihilation 
operator, a, and the creation operator, a†:

 ✓ 

 ✓ 

Now you can write the harmonic oscillator Hamiltonian like this, in terms of a 
and a†:

  

As for creating new operators here, the quantum physicists went crazy, even 
giving a name to a†a: the N or number operator. So here’s how you can write 
the Hamiltonian:

  

The N operator returns the number of the energy level of the harmonic oscil-
lator. If you denote the eigenstates of N as |n>, you get this, where n is the 
number of the nth state:

N|n> = n|n>

Because H = ℏω(N + 1/2), and because H|n> = En |n>, then by comparing the 
previous two equations, you have

  

Amazingly, that gives you the energy eigenvalues of the nth state of a quan-
tum mechanical harmonic oscillator. So here are the energy states:

 ✓ The ground state energy corresponds to n = 0:
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 ✓ The first excited state is

  

 ✓ The second excited state has an energy of

  

And so on. That is, the energy levels are discrete and nondegenerate (not 
shared by any two states). Thus, the energy spectrum is made up of equidis-
tant bands.

Finding the Eigenstates
When you have the eigenstates (see Chapter 2 to find out all about eigen-
states), you can determine the allowable states of a system and the relative 
probability that the system will be in any of those states.

The commutator of operators A, B is [A, B] = AB – BA, so note that the com-
mutator of a and a† is the following:

  

This is equal to the following:

  

This equation breaks down to [a, a†] = 1. And putting together this equation 

with 
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Finding the energy of a|n> 
Okay, with the commutator relations, you’re ready to go. The first question 
is if the energy of state |n> is En, what is the energy of the state a|n>? Well, 
to find this rearrange the commutator [a, H] = ℏωa to get Ha = aH – ℏωa. Then 
use this to write the action of ℏ on a|n> like this:

H(a|n>)

= (aH – ℏωa)|n>

= (En – ℏω)(a|n>)

So a|n> is also an eigenstate of the harmonic oscillator, with energy En – ℏω,  
not En. That’s why a is called the annihilation or lowering operator: It lowers 
the energy level of a harmonic oscillator eigenstate by one level.

Finding the energy of a†|n>
So what’s the energy level of a†|n>? You can write that can like this:

  

All this means that a†|n> is an eigenstate of the harmonic oscillator, with 
energy En + ℏω, not just En — that is, the a† operator raises the energy level of 
an eigenstate of the harmonic oscillator by one level.

Using a and a† directly
If you’ve been following along from the preceding section, you know that 
H(a|n>) = (En – ℏω)(a|n>) and H(a†|n>) = (En + ℏω)(a†|n>). You can derive the 
following from the these equations:

 ✓ a|n> = C|n – 1>

 ✓ a†|n> = D|n + 1>
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C and D are positive constants, but what do they equal? The states |n – 1> 
and |n + 1> have to be normalized, which means that <n – 1|n – 1> =  
<n + 1|n + 1> = 1. So take a look at the quantity using the C operator:

(<n|a†)(a|n>) = C2<n – 1|n – 1>

And because |n – 1> is normalized, <n – 1|n – 1> = 1:

(<n|a†)(a|n>) = C2

 <n|a†a|n> = C2

But you also know that a†a = N, the energy level operator, so you get the fol-
lowing equation:

<n|N|n> = C2

N|n> = n|n>, where n is the energy level, so

n<n|n> = C2

However, <n|n> = 1, so

n = C2

n½ = C

This finally tells you, from a|n> = C|n – 1>, that

a|n> = n½ |n – 1>

That’s cool — now you know how to use the lowering operator, a, on eigen-
states of the harmonic oscillator.

What about the raising operator, a†? First we rearrange the commutator     
[a†, H] = – ℏωa†, to get 

Ha† = a†H + ℏωa

Then you follow the same course of reasoning you take with the a operator to 
show the following:

a†|n> = (n + 1)1/2 |n + 1>

So at this point, you know what the energy eigenvalues are and how the rais-
ing and lowering operators affect the harmonic oscillator eigenstates. You’ve 
made quite a lot of progress, using the a and a† operators instead of trying to 
solve the Schrödinger equation.
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Finding the harmonic oscillator  
energy eigenstates
The charm of using the operators a and a† is that given the ground state, |0>, 
those operators let you find all successive energy states. If you want to find 
an excited state of a harmonic oscillator, you can start with the ground state, 
|0>, and apply the raising operator, a†. For example, you can do this:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

And so on. In general, you have this relation:

  

Working in position space
Okay,  is fine as far as it goes — but just what is |0>? Can’t 

you get a spatial eigenstate of this eigenvector? Something like ψ0(x), not 
just|0>? Yes, you can. In other words, you want to find <x|0> = ψ0(x). So you 
need the representations of a and a† in position space. 

The p operator is defined as
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Because , you can write

  

And writing x0 = , this becomes

  

Okay, what about the a operator? You know that 

  

And that

  

Therefore,

  

You can also write this equation as

  

Okay, so that’s a in the position representation. What’s a†? That turns out to 
be this:
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Now’s the time to be clever. You want to solve for |0> in the position space, 
or <x|0>. Here’s the clever part — when you use the lowering operator, a, 
on|0>, you have to get 0 because there’s no lower state than the ground 
state, so a|0> = 0. And applying the <x| bra gives you <x|a|0> = 0.

That’s clever because it’s going to give you a homogeneous differential equa-
tion (that is, one that equals zero). First, you substitute for a:

 

  

Multiplying both sides by  gives you the following

  

  

The solution to this compact differential equation is

  

That’s a gaussian function, so the ground state of a quantum mechanical har-
monic oscillator is a gaussian curve, as you see in Figure 4-1.
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Figure 4-1: 
The ground 

state of a 
quantum 

mechanical 
harmonic 
oscillator.

 

ψ0 (x)

x

Finding the wave function of the ground state
As a gaussian curve, the ground state of a quantum oscillator is ψ0(x) = A 
exp(–x2/2x0

2). How can you figure out A? Wave functions must be normalized, 
so the following has to be true:

  

Substituting for ψ0(x) gives you this next equation:

  

  

You can evaluate this integral to be

  

Therefore,
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This means that the wave function for the ground state of a quantum 
mechanical harmonic oscillator is

  

Cool. Now you’ve got an exact wave function.

A little excitement: Finding the first excited state
Okay, the preceding section shows you what ψ0(x) looks like. What about the 
first excited state, ψ1(x)? Well, as you know, ψ1(x) = <x|1> and |1> = a†|0>, so

ψ1(x) = <x|a†|0>

And you know that a† is the following:

  

Therefore, ψ1(x) = <x|a†|0> becomes

  

                      

And because ψ0(x) = <x|0>, you get the following equation:
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You also know the following:

  

Therefore,  becomes

  

What’s ψ1(x) look like? You can see a graph of ψ1(x) in Figure 4-2, where it has 
one node (transition through the x axis).

 

Figure 4-2: 
The first 
excited 

state of a 
quantum 

mechanical 
harmonic 
oscillator.
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Finding the second excited state
All right, how about finding ψ2(x) and so on? You can find ψ2(x) from this 
equation:
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Substituting for a†, the equation becomes

  

Using hermite polynomials to find any excited state
You can generalize the differential equation for ψn(x) like this:

  

To solve this general differential equation, you make use of the fact that

  

Hn(x) is the nth hermite polynomial, which is defined this way:

  

Holy mackerel! What do the hermite polynomials look like? Here’s H0(x), 
H1(x), and so on:

 ✓ H0(x) = 1

 ✓ H1(x) = 2x

 ✓ H2(x) = 4x2 – 2

 ✓ H3(x) = 8x3 – 12x

 ✓ H4(x) = 16x4 – 48x2 + 12

 ✓ H5(x) = 32x5 – 160x3 + 120x

What does this buy you? You can express the wave functions for quantum 
mechanical harmonic oscillators like this, using the hermite polynomials Hn(x):
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And that’s what the wave function looks like for a quantum mechanical har-
monic oscillator. Who knew it would’ve involved hermite polynomials?

You can see what ψ2(x) looks like in Figure 4-3; note that there are two nodes 
here — in general, ψn(x) for the harmonic oscillator will have n nodes. 

 

Figure 4-3: 
The second 

excited 
state of a 
quantum 

mechanical 
harmonic 
oscillator.

 

x

Putting in some numbers
The preceding section gives you ψn(x), and you’ve already solved for En, so 
you’re on top of harmonic oscillators. Take a look at an example.

Say that you have a proton undergoing harmonic oscillation with ω = 4.58 × 
1021 sec–1, as shown in Figure 4-4.

 

Figure 4-4: 
A proton 

undergoing 
harmonic 

oscillation.
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What are the energies of the various energy levels of the proton? You know 
that in general,

  

So here are the energies of the proton, in megaelectron volts (MeV):

 ✓ 

 ✓ 

 ✓ 

 ✓ 

And so on. 

Now what about the wave functions? The general form of ψn(x) is

  

where  

Convert all length measurements into femtometers (1 fm = 1 × 10–15 m), giving 
you x0 = 3.71 fm. Here’s ψ0(x), where x is measured in femtometers:

  

Here are a couple more wave functions:

 ✓ 

 ✓ 
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Looking at Harmonic Oscillator 
Operators as Matrices

Because the harmonic oscillator has regularly spaced energy levels, people 
often view it in terms of matrices, which can make things simpler. For exam-
ple, the following may be the ground state eigenvector (note that it’s an infi-
nite vector):

  

And this may be the first excited state:

  



109 Chapter 4: Back and Forth with Harmonic Oscillators

And so on. The N operator, which just returns the energy level, would then 
look like this:

  

So N|2> gives you
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This is equal to

  

In other words, N|2> = 2|2>.

How about the a (lowering) operator? That looks like this:
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In this representation, what is a|1>? In general, a|n> = n1/2|n – 1>, so a|1> 
should equal|0>. Take a look:

  

This matrix multiplication equals the following:
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In other words, a|1> =|0>, just as expected.

So how about the a† (raising) operator? Here’s how it works in general: a†|n> 
= (n + 1)1/2|n + 1>. In matrix terms, a† looks like this:

  

For example, you expect that a†|1> = |2>. Does it? The matrix multiplica-
tion is
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This equals the following:

  

So a†|1> = |2>, as it should.

How about taking a look at the Hamiltonian, which returns the energy of an 
eigenstate, H|n> = En|n>? In matrix form, the Hamiltonian looks like this:

  

So if you prefer the matrix way of looking at things, that’s how it works for 
the harmonic oscillator.
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A Jolt of Java: Using Code to Solve the 
Schrödinger Equation Numerically

Here’s the one-dimensional Schrödinger equation:

  

And for harmonic oscillators, you can write the equation like this, where  
 

:

  

In general, as the potential V(x) gets more and more complex, using a com-
puter to solve the Schrödinger equation begins to look more and more 
attractive. In this section, I show you how to do just that for the harmonic 
oscillator Schrödinger equation.

Making your approximations
In computer terms, you can approximate ψ(x) as a collection of points, ψ1, ψ2, 
ψ3, ψ4, ψ5, and so on, as you see in Figure 4-5.

 

Figure 4-5: 
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the x axis.
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Each point along ψ(x) — ψ1, ψ2, ψ3, ψ4, ψ5, and so on — is separated from its 
neighbor by a distance, h0, along the x axis. And because dψ/dx is the slope of 
ψ(x), you can make the approximation that

  

In other words, the slope, dψ/dx, is approximately equal to Δy/Δx, which is 
equal to ψn + 1 – ψn (= Δy) divided by h0 (= Δx).

You can rearrange the equation to this:

  

That’s a crude approximation for ψn + 1, given ψn. So, for example, if you know 
ψ4, you can find the approximate value of ψ5, if you know dψ/dx in the region 
of ψ4.

You can, of course, find better approximations for ψn + 1. In particular, physi-
cists often use the Numerov algorithm when solving the Schrödinger equa-
tion, and that algorithm gives you ψn + 1 in terms of ψn and ψn – 1. Here’s what 
the Numerov algorithm says:

  

In this equation, for the harmonic oscillator, 

and the boundary conditions are ψ(–∞) = ψ(∞) = 0. Wow. Imagine having to 
calculate this by hand. Why not leave it up to the computer?

For a proton undergoing harmonic oscillation with ω = 4.58 × 1021 sec–1, the 
exact ground state energy is
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You solve this problem exactly earlier in this chapter. The following sections 
have you try to get this same result using the Numerov algorithm and a  
computer.

Building the actual code
To calculate the ground state energy of the harmonic oscillator using the 
Numerov algorithm, this section uses the Java programming language, which 
you can get for free from java.sun.com.

Here’s how you use the program: You choose a trial value of the energy for 
the ground state, E0, and then calculate ψ(x) at ∞, which should be zero — 
and if it’s not, you can adjust your guess for E0 and try again. You keep going 
until ψ(∞) = 0 (or if not actually 0, a very small number in computer terms) — 
and when it does, you know you’ve guessed the correct energy.

Approximating ψ(∞)
How do you calculate ψ(∞)? After all, infinity is a pretty big number, and the 
computer is going to have trouble with that. In practical terms, you have to use 
a number that approximates infinity. In this case, you can use the classical turn-
ing points of the proton — the points where all the proton’s energy is potential 
energy and it has stopped moving in preparation for reversing its direction.

At the turning points, xt,  (that is, all the energy is in potential 
energy), so

  

And this is on the order of ±5 femtometers (fm), so you assume that ψ(x) 
should surely be zero at, say, ±15 fm. Here’s the interval over which you cal-
culate ψ(x):

 ✓ xmin = –15 fm

 ✓ xmax = 15 fm

Divide this 30 fm interval into 200 segments, making the width of each seg-
ment, h0, equal to (xmax – xmin)/200 = h0 = 0.15 fm.

Okay, you’re making progress. You’ll start by assuming that ψ(xmin) = 0, guess 
a value of E0, and then calculate ψ(xmax) = ψ200 (because there are 200 seg-
ments, at x = xmax, ψn = ψ200), which should equal zero when you get E0.
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Here’s what the results tell you:

 ✓ Correct: If abs(ψ200) is zero, or in practical terms, less than, say, your 
maximum allowed value of ψmax = 1 × 10–8, then you’re done — the E0 you 
guessed was correct.

 ✓ Too high: If abs(ψ200) is larger than your maximum allowed ψ, ψmax  
(= 1 × 10–8), and ψ200 is positive, the energy you chose for E0 was too  
high. You have to subtract a small amount of energy, ΔE — say 1 × 10–7 
MeV — from your guess for the energy; then calculate abs(ψ200) again 
and see whether it’s still higher than your maximum allowed ψ, ψmax. If 
so, you have to repeat the process again.

 ✓ Too low: If abs(ψ200) is larger than your maximum allowed ψ, ψmax (= 1 × 
10–8), and ψ200 is negative, the energy you chose for E0 was too low. You 
have to add a small amount of energy, ΔE, to your guess for the energy; 
then calculate abs(ψ200) again and see whether it’s still higher than your 
maximum allowed ψ, ψmax. If so, you have to repeat the process.

So how do you calculate ψ200? Given two starting values, ψ0 and ψ1, use the 
Numerov algorithm:

  

Keep calculating successive points along ψ(x): ψ2, ψ3, ψ4, and so on. The last 
point is ψ200.

Okay, you’re on our way. You’re going to start the code with the assumption 
that ψ0 = 0 and ψ1 is a very small number (you can choose any small number 
you like). Because you know that the exact ground level energy is actually 
1.50 MeV, start the code with the guess that E0 = 1.4900000 MeV and let the 
computer calculate the actual value using increments of ΔE = 1 × 10–7 MeV.

Note also this equation depends on kn(x)2, kn – 1(x)2, and kn + 1(x)2. Here’s how 
you can find these values, where Ecurrent is the current guess for the ground 
state energy (substitute n, n – 1, and n + 1 for j):
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And you know that ω = 4.58 × 1021 sec–1, so

 ✓ 

 ✓ 

Therefore, kj
2(xj) = 0.05Ecurrent – 5.63 × 10–3xj

2, where xj for a particular seg-
ment j is xj = jh0 + xmin.

Writing the code
Okay, now I’m going to put together all the info from the preceding sec-
tion into some Java code. You start with a Java class, se (for Schrödinger 
Equation), in a file you name se.java:

public class se  
    .
    .
    .
}

Then you set up the variables and constants you’ll need, including an array 
for the values you calculate for ψ (because to find ψn + 1, you’ll have had to 
store the already-calculated values of ψn and ψn – 1):

public class se  
{

  double psi[];
  double ECurrent;
  double Emin = 1.490;
  double xMin = -15.;
  double xMax = 15.;
  double hZero;
  double EDelta = 0.0000001;
  double maxPsi = 0.00000001;
  int numberDivisions = 200;
        .
        .
        .

}

The se class’s constructor gets run first, so you initialize values there, includ-
ing ψ0 (= ψ(xmin) = 0) and ψ1 (any small number you want) to get the calcula-
tion going. In the main method, called after the constructor, you create an 
object of the se class and call it calculate method to get things started:
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public class se  
{

  double psi[];
  double ECurrent;
  double Emin = 1.490;
  double xMin = -15.;
  double xMax = 15.;
  double hZero;
  double EDelta = 0.0000001;
  double maxPsi = 0.00000001;
  int numberDivisions = 200;

  public se()
  {
    ECurrent = Emin;
    psi = new double[numberDivisions + 1];
    psi[0] = 0;
    psi[1] = -0.000000001;
    psi[numberDivisions] = 1.0;
    hZero = (xMax - xMin) / numberDivisions;
  }

  public static void main(String [] argv) 
  {  
    se de = new se();
    de.calculate();
  }
        .
        .
        .
}

The real work takes place in the calculate method, where you use the current 
guess for the energy and calculate ψ200: 

 ✓ If abs(ψ200) is less than your maximum allowed value of ψ, ψmax, you’ve 
found the answer — your current guess for the energy is right on.

 ✓ If abs(ψ200) is greater than ψmax and ψ200 is positive, you have to subtract 
ΔE from your current guess for the energy and try again.

 ✓ If abs(ψ200) is greater than ψmax and ψ200 is negative, you have to add ΔE 
to your current guess for the energy and then try again.
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Here’s what all this looks like in code:

  public void calculate()
  {  
    while(Math.abs(psi[numberDivisions])> maxPsi){
      for (int i = 1; i <numberDivisions; i++){
        psi[i + 1] = calculateNextPsi(i);
      }
      if (psi[numberDivisions]> 0.0) {
        ECurrent = ECurrent ñ EDelta;
      }
      else {
        ECurrent = ECurrent + EDelta;
      }
      System.out.println(ìPsi200: ì + psi[numberDivisions] 

+ ì E: ì + round(ECurrent));
    }
    System.out.println(ì\nThe ground state energy is ì + 

round(ECurrent) + ì MeV.î);
  }

Note that the next value of ψ (that is, ψn + 1) is calculated with a method 
named calculateNextPsi. Here’s where you use the Numerov algorithm — 
given ψn, ψn – 1, you can calculate ψn + 1:

  public double calculateNextPsi(int n)
  {
    double KSqNMinusOne = calculateKSquared(n - 1);
    double KSqN = calculateKSquared(n);
    double KSqNPlusOne = calculateKSquared(n + 1);
    double nextPsi = 2.0 *(1.0 - (5.0 * hZero * hZero * 

KSqN / 12.0)) * psi[n];
    nextPsi = nextPsi - (1.0 + (hZero * hZero * 

KSqNMinusOne / 12.0)) * psi[n - 1];
    nextPsi = nextPsi /(1.0 + (hZero * hZero * KSqNPlusOne 

/ 12.0));
    return nextPsi;
  }

Finally, note that to calculate ψn + 1, you need kn, kn – 1, and kn + 1, which you 
find with a method named calculateKSquared, which uses the numeric values 
you’ve already figured out for this problem:

public double calculateKSquared(int n)
  {
    double x = (hZero * n) + xMin;
    return (((0.05) * ECurrent) - ((x * x) * 5.63e-3));
  }
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Whew. Here’s the whole program, se.java:

public class se  
{

  double psi[];
  double ECurrent;
  double Emin = 1.490;
  double xMin = -15.;
  double xMax = 15.;
  double hZero;
  double EDelta = 0.0000001;
  double maxPsi = 0.00000001;
  int numberDivisions = 200;

  public se()
  {
    ECurrent = Emin;
    psi = new double[numberDivisions + 1];
    psi[0] = 0;
    psi[1] = -0.000000001;
    psi[numberDivisions] = 1.0;
    hZero = (xMax - xMin) / numberDivisions;
  }

  public static void main(String [] argv) 
  {  
    se de = new se();
    de.calculate();
  }

  public void calculate()
  {  
    while(Math.abs(psi[numberDivisions])> maxPsi){
      for (int i = 1; i <numberDivisions; i++){
        psi[i + 1] = calculateNextPsi(i);
      }
      if (psi[numberDivisions]> 0.0) {
        ECurrent = ECurrent - EDelta;
      }
      else {
        ECurrent = ECurrent + EDelta;
      }
      System.out.println(ìPsi200: ì + psi[numberDivisions] 

+ ì E: ì + round(ECurrent));
    }
    System.out.println(ì\nThe ground state energy is ì + 

round(ECurrent) + ì MeV.î);
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  }

  public double calculateKSquared(int n)
  {
    double x = (hZero * n) + xMin;
    return (((0.05) * ECurrent) - ((x * x) * 5.63e-3));
  }

  public double calculateNextPsi(int n)
  {
    double KSqNMinusOne = calculateKSquared(n - 1);
    double KSqN = calculateKSquared(n);
    double KSqNPlusOne = calculateKSquared(n + 1);
    double nextPsi = 2.0 *(1.0 - (5.0 * hZero * hZero * 

KSqN / 12.0)) * psi[n];
    nextPsi = nextPsi - (1.0 + (hZero * hZero * 

KSqNMinusOne / 12.0)) * psi[n - 1];
    nextPsi = nextPsi /(1.0 + (hZero * hZero * KSqNPlusOne 

/ 12.0));
    return nextPsi;
  }

  public double round(double val) 
  {
    double divider = 100000;
    val = val * divider;
    double temp = Math.round(val);
    return (double)temp / divider;
  }
}

Okay, now you can compile the code with javac, the Java compiler (if javac 
isn’t in your computer’s path, be sure to add the correct path to your com-
mand-line command, such as C:>C:\java\bin\javac se.java). 

C:>javac se.java

 This creates se.class from se.java, and you can run se.class with Java itself 
(adding the correct path if needed):

C:>java se



123 Chapter 4: Back and Forth with Harmonic Oscillators

Running the code
When you run the java code for the harmonic oscillator Schrödinger equa-
tion, it displays the successive values of ψ200 as it adjusts the current guess 
for the energy as it narrows in on the right answer — which it displays at the 
end of the run. Here’s what you see:

C:>java se
PSI200: -1.0503644097337778E-4 E: 1.49
PSI200: -1.050354423295303E-4 E: 1.49
PSI200: -1.0503444368533108E-4 E: 1.49
PSI200: -1.0503344504260495E-4 E: 1.49
        .
        .
        .
PSI200: -6.12820872814324E-8 E: 1.50066
PSI200: -6.031127521356655E-8 E: 1.50066
PSI200: -5.934046348307554E-8 E: 1.50066
PSI200: -5.836965180600015E-8 E: 1.50066
PSI200: -5.739883979461778E-8 E: 1.50066
PSI200: -5.6428029151212084E-8 E: 1.50066
PSI200: -5.5457218252899224E-8 E: 1.50066
PSI200: -5.4486408066519986E-8 E: 1.50066
PSI200: -5.351559702201636E-8 E: 1.50066
PSI200: -5.254478723976338E-8 E: 1.50066
PSI200: -5.157397714326237E-8 E: 1.50066
PSI200: -5.060316801012202E-8 E: 1.50066
PSI200: -4.963235841725704E-8 E: 1.50066
PSI200: -4.866154915227413E-8 E: 1.50066
PSI200: -4.7690740419271214E-8 E: 1.50066
PSI200: -4.6719932089691944E-8 E: 1.50066
PSI200: -4.574912368974434E-8 E: 1.50066
PSI200: -4.4778315322587505E-8 E: 1.50066
PSI200: -4.380750790476514E-8 E: 1.50066
PSI200: -4.28367005783992E-8 E: 1.50066
PSI200: -4.186589345217578E-8 E: 1.50066
PSI200: -4.0895085873184064E-8 E: 1.50066
PSI200: -3.992427935226201E-8 E: 1.50066
PSI200: -3.8953472673066213E-8 E: 1.50066
PSI200: -3.79826665057731E-8 E: 1.50066
PSI200: -3.701186038502826E-8 E: 1.50066
PSI200: -3.604105453620266E-8 E: 1.50066
PSI200: -3.507024949509914E-8 E: 1.50066
PSI200: -3.4099444217875174E-8 E: 1.50066
PSI200: -3.312863911389194E-8 E: 1.50066
PSI200: -3.2157834719961815E-8 E: 1.50066
PSI200: -3.1187030089902856E-8 E: 1.50066
PSI200: -3.021622619594536E-8 E: 1.50066
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PSI200: -2.9245421985136167E-8 E: 1.50066
PSI200: -2.8274618172375295E-8 E: 1.50066
PSI200: -2.7303815344369703E-8 E: 1.50066
PSI200: -2.633301196069577E-8 E: 1.50066
PSI200: -2.5362208888510866E-8 E: 1.50066
PSI200: -2.439140632085814E-8 E: 1.50066
PSI200: -2.342060424823075E-8 E: 1.50066
PSI200: -2.244980221960756E-8 E: 1.50066
PSI200: -2.147900005347249E-8 E: 1.50067
PSI200: -2.0508198285622532E-8 E: 1.50067
PSI200: -1.9537397616823192E-8 E: 1.50067
PSI200: -1.8566596602866105E-8 E: 1.50067
PSI200: -1.7595795286272332E-8 E: 1.50067
PSI200: -1.6624994703779555E-8 E: 1.50067
PSI200: -1.565419461892862E-8 E: 1.50067
PSI200: -1.4683394780836424E-8 E: 1.50067
PSI200: -1.3712594592034165E-8 E: 1.50067
PSI200: -1.2741795159638587E-8 E: 1.50067
PSI200: -1.177099622966848E-8 E: 1.50067
PSI200: -1.0800197142733883E-8 E: 1.50067
PSI200: -9.82939798529632E-9 E: 1.50067

The ground state energy is 1.50067 MeV.

And there you have it — the program approximates the ground state energy 
as 1.50067 MeV, pretty darn close to the value you calculated theoretically in 
the earlier section “Making your approximations”: 1.50 MeV. 

Very cool.



Part III
Turning to Angular 

Momentum  
and Spin



In this part . . .

T 
hings that spin and rotate — that’s the topic of this 
part. Quantum physics has all kinds of things to say 

about how angular momentum and spin are quantized, 
and you see it all in this part.



Chapter 5

Working with Angular Momentum 
on the Quantum Level

In This Chapter
▶ Angular momentum

▶ Angular momentum and the Hamiltonian

▶ Matrix representation of angular momentum

▶ Eigenfunctions of angular momentum

I 
n classical mechanics, you may measure angular momentum by attaching 
a golf ball to a string and whirling it over your head. In quantum mechan-

ics, think in terms of a single molecule made up of two bound atoms rotating 
around each other. That’s the level at which quantum mechanical effects 
become noticeable. And at that level, it turns out that angular momentum 
is quantized. And since that has tangible results in many cases, such as the 
spectrum of excited atoms, it’s an important topic.

Besides having kinetic and potential energy, particles can also have rotational 
energy. Here’s what the Hamiltonian (total energy — see Chapter 4) looks 
like:

Here, L is the angular momentum operator and I is the rotation moment of 
inertia. What are the eigenstates of angular momentum? If L is the angular 
momentum operator, and l is an eigenvalue of L, then you could write the 
 following:

But that turns out to be incomplete because angular momentum is a vector 
in three-dimensional space — and it can be pointing any direction. Angular 
momentum is typically given by a magnitude and a component in one  
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direction, which is usually the Z direction. So in addition to the magnitude l, 
you also specify the component of L in the Z direction, Lz (the choice of Z is 
arbitrary — you can just as easily use the X or Y direction).

If the quantum number of the Z component of the angular momentum is des-
ignated by m, then the complete eigenstate is given by |l, m>, so the equation 
becomes the following:

That’s the kind of discussion about eigenstates that I cover in this chapter, 
and I begin with a discussion of angular momentum.

Ringing the Operators: Round and  
Round with Angular Momentum

Take a look at Figure 5-1, which depicts a disk rotating in 3D space. Because 
you’re working in 3D, you have to go with vectors to represent both magni-
tude and direction.

 

Figure 5-1:  
A rotating 
disk with 

angular 
momentum 

vector L.
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As you can see, the disk’s angular momentum vector, L, points perpendicular 
to the plane of rotation. Here, you can apply the right-hand rule: If you wrap 
your right hand in the direction something is rotating, your thumb points in 
the direction of the L vector.

Having the L vector point out of the plane of rotation has some advantages. 
For example, if something is rotating at a constant angular speed, the L 
vector will be constant in magnitude and direction — which makes more 
sense than having the L vector rotating in the plane of the disk’s rotation and 
constantly changing direction. 

Because L is a 3D vector, it can point in any direction, which means that it 
has x, y, and z components, Lx, Ly, and Lz (which aren’t vectors, just magni-
tudes). You can see Lz in Figure 5-1.

L is the vector product of position R and linear momentum P, so (L = R × P). 
You can also write Lx, Ly, and Lz at any given moment in terms of operators 
like this, where Px, Py, and Pz are the momentum operators (which return the 
momentum in the x, y, and z directions) and X, Y, and Z are the position oper-
ators (which return the position in the x, y, and z directions):

 ✓ Lx = YPz – ZPy

 ✓ Ly = ZPx – XPz

 ✓ Lz = XPy – YPx

You can write the momentum operators Px, Py, and Pz as

In the same way you can represent the position operators by their equivalent 
coordinates, i.e.

 

✓

 

 

✓

 

 

✓
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Then if we substitute these operator representations into the equations for 
Lx, Ly, and Lz, you get,

Finding Commutators of Lx, Ly, and Lz
First examine Lx, Ly, and Lz by taking a look at how they commute; if they 
commute (for example, if [Lx, Ly] = 0), then you can measure any two of them 
(Lx and Ly, for example) exactly. If not, then they’re subject to the uncertainty 
relation, and you can’t measure them simultaneously exactly.

Okay, so what’s the commutator of Lx and Ly? Using Lx = YPz – ZPy and Ly = 
ZPx – XPz, you can write the following:

[Lx, Ly] = [YPz – ZPy, ZPx – XPz] 

You can write this equation as

 [Lx, Ly] = [YPz, ZPx] – [YPz, XPz] – [ZPy, ZPx] + [ZPy, XPz]

 = 

 = iℏ(XPy – YPx)

But XPy – YPx = Lz, so [Lx, Ly] = iℏLz. So Lx and Ly don’t commute, which means 
that you can’t measure them both simultaneously with complete precision. 
You can also show that [Ly, Lz] = iℏLx and [Lz, Lx] = iℏLy.

 Because none of the components of angular momentum commute with each 
other, you can’t measure any two simultaneously with complete precision. 
Rats.

That also means that the Lx, Ly, and Lz operators can’t share the same eigen-
states. So what can you do? How can you find an operator that shares eigen-
states with the various components of L so that you can write the eigenstates 
as |l, m>?

The usual trick here is that the square of the angular momentum, L2, is a 
scalar, not a vector, so it’ll commute with the Lx, Ly, and Lz operators, no 
problem:
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 ✓ [L2, Lx] = 0

 ✓ [L2, Ly] = 0

 ✓ [L2, Lz] = 0

Okay, cool, you’re making progress. Because Lx, Ly, and Lz don’t commute, 
you can’t create an eigenstate that lists quantum numbers for any two of 
them. But because L2 commutes with them, you can construct eigenstates 
that have eigenvalues for L2 and any one of Lx, Ly, and Lz. By convention, the 
direction that’s usually chosen is Lz.

Creating the Angular Momentum 
Eigenstates

Now’s the time to create the actual eigenstates, |l, m>, of angular momentum 
states in quantum mechanics. When you have the eigenstates, you’ll also 
have the eigenvalues, and when you have the eigenvalues, you can solve 
the Hamiltonian and get the allowed energy levels of an object with angular 
momentum.

 Don’t make the assumption that the eigenstates are |l, m>; rather, say they’re 
|α, β>, where the eigenvalue of L2 is L2|α, β> = ℏ2α|α, β>. So the eigenvalue of 
L2 is ℏ2α, where you have yet to solve for α. Similarly, the eigenvalue of Lz is 
Lz|α, β> = ℏβ|α, β>.

To proceed further, you have to introduce raising and lowering operators (as 
you do with the harmonic oscillator in Chapter 4). That way, you can solve 
for the ground state by, for example, applying the lowering operator to the 
ground state and setting the result equal to zero — and then solving for the 
ground state itself.

In this case, the raising operator is L+ and the lowering operator is L–. These 
operators raise and lower the Lz quantum number. In a way analogous to the 
raising and lowering operators in Chapter 4, you can define the raising and 
lowering operators this way:

 ✓ Raising: L+ = Lx + iLy

 ✓ Lowering: L– = Lx – iLy

These two equations mean that
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You can also see that

That means the following are all equal to L2:

 ✓ L2 = L+L– + Lz
2 – ℏL–

 ✓ L2 = L–L+ + Lz
2 + ℏLz

 ✓ L2 = _1 (L+L– + L–L+) + Lz
2 

        2

You can also see that these equations are true:

 ✓ [L2, L±] = 0

 ✓ [L+, L–] = 2ℏLz

 ✓ [Lz, L±] = ±ℏL±

Okay, now you can put all this to work. You’re getting to the good stuff. 

Take a look at the operation of L+ on |α, β>:

L+|α, β> = ?

To see what L+|α, β> is, start by applying the Lz operator on it like this:

Lz L+|α, β> = ?

From [Lz, L±] = ±ℏL±, you can see that Lz L+ – L+ Lz = ℏL+, so

Lz L+ |α, β> = L+ Lz|α, β> + ℏL+ |α, β>

And because Lz|α, β> = ℏβ|α, β>, you have the following:

Lz L+|α, β> = ℏ(β + 1)L+|α, β> 

This equation means that the eigenstate L+|α, β> is also an eigenstate of the 
Lz operator, with an eigenvalue of (β + 1). Or in a more comprehensible way:

L+|α, β> = c|α, β + 1> 

where c is a constant you find later in “Finding the Eigenvalues of the Raising 
and Lowering Operators.”

So the L+ operator has the effect of rasing the β quantum number by 1. 
Similarly, the lowering operator does this:

L–|α, β> = d|α, β – 1> 
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Now take a look at what L2L+|α, β> equals:

L2
 L+ |α, β> = ?

Because L2 is a scalar, it commutes with everything. L2
 L+ – L+ L

2 = 0, so this is 
true:

L2
 L+|α, β> = L+ L

2|α, β>

And because L2|α, β> = αℏ2|α, β>, you have the following equation:

L2
 L+|α, β> = αℏ2 L+|α, β>

Similarly, the lowering operator, L–, gives you this:

L2
 L–|α, β> = αℏ2 L–|α, β>

So the results of these equations mean that the L± operators don’t change the 
α eigenvalue of |α, β> at all. 

Okay, so just what are α and β? Read on.

Finding the Angular Momentum 
Eigenvalues

The eigenvalues of the angular momentum are the possible values the angu-
lar momentum can take, so they’re worth finding. Let’s take a look at how to 
do just that. 

Deriving eigenstate equations  
with βmax and βmin
Note that L2 – Lz

2 = Lx
2 + Ly

2, which is a positive number, so L2 – Lz
2 ≥ 0. That 

means that
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And substituting in L2|α, β> = αℏ2|α, β> and Lz
2|α, β> = βℏ|α, β>, and using 

the fact that the eigenstates are normalized, gives you this:

Therefore, α ≥ β2. So there’s a maximum possible value of β, which you can 
call βmax. 

You can be clever now, because there has to be a state |α, βmax> such that 
you can’t raise β any more. Thus, if you apply the raising operator, you get 
zero:

L+|α, βmax> = 0

Applying the lowering operator to this also gives you zero:

L–L+|α, βmax> = 0

And because L–L+ = L2 – Lz
2 – ℏLz, that means the following is true:

(L2 – Lz
2 – ℏLz)| α, βmax> = 0

Putting in L2|α, βmax> = αℏ2 and  gives you this:

 (α – βmax
2 – βmax)ℏ

2 = 0

   α = βmax(βmax + 1) = 0

Cool, now you know what α is. At this point, it’s usual to rename βmax as l and 
β as m, so |α, β> becomes |l, m> and

 ✓ L2|l, m> = l(l + 1) ℏ2|l, m>

 ✓ Lz|l, m> = mℏ|l, m>

You can say even more. In addition to a βmax, there must also be a βmin such 
that when you apply the lowering operator, L–, you get zero, because you 
can’t go any lower than βmin:

L–|l, βmin> = 0

And you can apply L+ on this as well:

L+L–|l, βmin> = 0
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From L–L+ = L2 – Lz
2 + ℏLz, you know that 

(L2 – Lz
2 + ℏLz)|α, βmin> = 0

which gives you the following:

(α – βmin
2 + βmin)ℏ2 = 0

       α – βmin
2 + βmin = 0

 α = βmin
2 – βmin 

 α = βmin(βmin – 1) 

And comparing this equation to α = βmax(βmax + 1) = 0 gives you

βmax = –βmin 

Note that because you reach |α, βmin> by n successive applications of L– on 
|α, βmax>, you get the following:

βmax = βmin + n

Coupling these two equations gives you

βmax = n/2

Therefore, βmax can be either an integer or half an integer (depending on 
whether n is even or odd).

 Because l = βmax, m = β, and n is a positive number, you can find that –l ≤ m ≤ l. 
So now you have it:

 ✓ The eigenstates are |l, m>.

 ✓ The quantum number of the total angular momentum is l.

 ✓ The quantum number of the angular momentum along the z axis is m.

 ✓ L2|l, m> = ℏ2l(l + 1)|l, m>, where l = 0, 1/2, 1, 3/2, ...

 ✓ Lz|l, m> = ℏm|l, m>, where m = –l, –(l – 1), ..., l – 1, l.

 ✓ –l ≤ m ≤ l.

For each l, there are 2l + 1 values of m. For example, if l = 2, then m can equal 
–2, –1, 0, 1, or 2. If l = 5/2, then m can equal –5/2, –3/2, –1/2, 1/2, 3/2, and 5/2.
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You can see a representative L and Lz in Figure 5-2. L is the total angular 
momentum and Lz is the projection of that total angular momentum on the 
z axis.

 

Figure 5-2:  
L and Lz.
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Getting rotational energy  
of a diatomic molecule
Here’s an example that involves finding the rotational energy spectrum of a 
diatomic molecule. Figure 5-3 shows the setup: A rotating diatomic molecule 
is composed of two atoms with masses m1 and m2. The first atom rotates at 
r = r1, and the second atom rotates at r = r2. What’s the molecule’s rotational 
energy?
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Figure 5-3: 
A rotating 

diatomic 
molecule.
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The Hamiltonian (as you can see at the chapter intro) is

I is the rotational moment of inertia, which is

I = m1r1
2 + m2r2

2 = μr2

where r = |r1 – r2| and 

Because L = Iω, L = μr2ω. Therefore, the Hamiltonian becomes
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So applying the Hamiltonian to the eigenstates, |l, m>, gives you the following:

And as you know, L2|l, m> = l(l + 1)ℏ2|l, m>, so this equation becomes

And because H|l, m> = E|l, m>, you can see that

And that’s the energy as a function of l, the angular momentum quantum 
number.

Finding the Eigenvalues of the Raising 
and Lowering Operators

This section looks at finding the eigenvalues of the raising and lowering angu-
lar momentum operators, which raise and lower a state’s z component of 
angular momentum.

Start by taking a look at L+, and plan to solve for c:

L+|l, m> = c|l, m + 1>

So L+|l, m> gives you a new state, and multiplying that new state by its trans-
pose should give you c2:

(L+|l, m>)†L+|l, m> = c2

To see this equation, note that (L+|l, m>)†L+|l, m> = c2<l, m + 1|l, m + 1> = c2. 
On the other hand, also note that(L+|l, m>)†L+|l, m> = < l, m|L+ L–|l, m>, so 
you have

<l, m|L+ L–|l, m> = c2
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What do you do about L+ L–? Well, you see earlier in the chapter, in “Creating 
the Angular Momentum Eigenstates,” that this is true: L+L– = L2 – Lz

2 + ℏLz. So 
your equation becomes the following:

Great! That means that c is equal to

So what is ? Applying the L2 and Lz operators 
gives you this value for c:

c = ℏ[l(l + 1) – m(m + 1)]1/2

And that’s the eigenvalue of L+, which means you have this relation:

L+|l, m> = ℏ[l(l + 1) – m(m + 1)]1/2|l, m + 1>

Similarly, you can show that L– gives you the following:

L–|l, m> = ℏ[l(l + 1) – m(m – 1)]1/2|l, m – 1>

Interpreting Angular Momentum  
with Matrices

Chapter 4 covers a matrix interpretation of harmonic oscillator states and 
operators, and you can handle angular momentum the same way (which 
often makes understanding what’s going on with angular momentum easier). 
You get to take a look at the matrix representation of angular momentum on 
a quantum level now.

Consider a system with angular momentum, with the total angular momen-
tum quantum number l = 1. That means that m can take the values –1, 0, and 
1. So you can represent the three possible angular momentum states like this:



140 Part III: Turning to Angular Momentum and Spin 

Okay, so what are the operators you’ve seen in this chapter in matrix repre-
sentation? For example, what is L2? You can write L2 this way in matrix form:

Okay, <1, 1|L2|1, 1> = l(l + 1)ℏ2 = 2ℏ2; <1, 1|L2|1, 0> = 0; <1, 0|L2|1, 0> = 2ℏ2; 
and so on; Therefore, the preceding matrix becomes the following:

And you can also write this as

So in matrix form, the equation L2|1, 1> = 2ℏ2|1, 1> becomes
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How about the L+ operator? As you probably know (from the preceding sec-
tion), L+|l, m> = ℏ[l(l + 1) – m(m + 1)]1/2|l, m + 1>. In this example, l = 1 and m 
= 1, 0, and –1. So you have the following:

 ✓ L+|1, 1> = 0

 ✓ 

 ✓ 

So the L+ operator looks like this in matrix form:

Therefore, L+|1, 0> would be

And this equals

In other words, .
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Okay, what about L–? You know that 

L–|l, m> = ℏ[l(l + 1) – m(m – 1)]1/2|l, m – 1>. 

 
In this example, l = 1 and m = 1, 0, and –1. 

So that means the following:

 ✓ 

 ✓ 

 ✓ L—|1, –1> = 0

So the L– operator looks like this in matrix form:

That means that L– |1, 1> would be

This equals

Which tells you that

Just as you’d expect.
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Okay, you’ve found L2, L+, and L–. Finding the matrix representation of Lz is 
simple because

 ✓ ℏ|1, 1> = Lz|1, 1> 

 ✓ 0 = Lz|1, 0> 

 ✓ –ℏ|1, 1> = Lz|1, –1> 

So you have that

Thus Lz |1, –1> equals

And this equals

So Lz|1, –1> = –ℏ|1, –1>.

Now what about finding the Lx and Ly operators? That’s not as hard as you 
may think, because

and
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Take a look at Lx first. L+ equals

And L– equals

So Lx equals:

Okay, now what about Ly? , so:

Cool. This is going pretty well — how about calculating [Lx, Ly]? To do that, 
you need to calculate [Lx, Ly] = LxLy – LyLx. First find LxLy:
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This equals

And similarly, LyLx equals

And this equals

So

And this equals
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But because

You can write the commutator, [Lx, Ly] like this: 
 

This is just the old result that we know and love, so it all checks out!

Rounding It Out: Switching to the 
Spherical Coordinate System

So far, this chapter has been dealing with angular momentum in terms of bras 
and kets, such as:

The charm of bras and kets is that they don’t limit you to any specific system 
of representation (see Chapter 2). So you have the general eigenstates, but 
what are the actual eigenfunctions of Lz and L2? That is, you’re going to try to 
find the actual functions that you can use with the angular momentum opera-
tors like L2 and Lz.

To find the actual eigenfunctions (not just the eigenstates), you turn from 
rectangular coordinates, x, y, and z, to spherical coordinates because it’ll 
make the math much simpler (after all, angular momentum is about things 
going around in circles). Figure 5-4 shows the spherical coordinate system.
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Figure 5-4:  
The 

spherical 
coordinate 

system.
 

x

z

yr
θ

φ

In the rectangular (Cartesian) coordinate system, you use x, y, and z to orient 
yourself. In the spherical coordinate system, you also use three quantities: r, 
θ, and ϕ, as Figure 5-4 shows. You can translate between the spherical coor-
dinate system and the rectangular one this way: The r vector is the vector to 
the particle that has angular momentum, θ is the angle of r from the z axis, 
and ϕ is the angle of r from the x axis.

 ✓ x = r sinθ cosϕ

 ✓ y = r sinθ sinϕ

 ✓ z = r cosθ

Consider the equations for angular momentum:

When you take the angular momentum equations with the spherical-coordi-
nate-system conversion equations, you can derive the following:

 ✓ 

 ✓ 
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 ✓ 

 ✓ 

Okay, these equations look pretty involved. But there’s one thing to notice: 
They depend only on θ and ϕ, which means their eigenstates depend only on 
θ and ϕ, not on r. So the eigenfunctions of the operators in the preceding list 
can be denoted like this:

<θ, ϕ|l, m> 

Traditionally, you give the name Ylm(θ, ϕ) to the eigenfunctions of angular 
momentum in spherical coordinates, so you have the following:

Ylm(θ, ϕ) = <θ, ϕ|l, m> 

All right, time to work on finding the actual form of Ylm(θ, ϕ). You know that 
when you use the L2 and Lz operators on angular momentum eigenstates, you 
get this:

L2|l, m> = l(l + 1) ℏ2|l, m>

Lz|l, m> = mℏ|l, m>

So the following must be true:

 ✓ L2Ylm(θ, ϕ) = l(l + 1)ℏ2Ylm(θ, ϕ)

 ✓ LzYlm(θ, ϕ) = mℏYlm(θ,ϕ)

In fact, you can go further. Note that Lz depends only on θ, which suggests 
that you can split Ylm(θ,ϕ) up into a part that depends on θ and a part that 
depends on ϕ. Splitting Ylm(θ,ϕ) up into parts looks like this:

Ylm(θ,ϕ) = Θlm(θ)Φm(ϕ)

That’s what makes working with spherical coordinates so helpful — you can 
split the eigenfunctions up into two parts, one that depends only on θ and 
one part that depends only on ϕ.
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The eigenfunctions of Lz in  
spherical coordinates
Start by finding the eigenfunctions of Lz in spherical coordinates. In spherical 
coordinates, the Lz operator looks like this:

So LzYlm(θ, ϕ) = LzΘlm(θ)Φm(ϕ) is

which is the following:

And because LzYlm(θ,ϕ) = mℏYlm(θ,ϕ), this equation can be written in this version:

Cancelling out terms from the two sides of this equation gives you this differ-
ential equation:

This looks easy to solve, and the solution is just

Φm(ϕ) = Ceimϕ

where C is a constant of integration. 

You can determine C by insisting that Φm(ϕ) be normalized — that is, that the 
following hold true:
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which gives you

So Φm(ϕ) is equal to this:

You’re making progress — you’ve been able to determine the form of Φm(ϕ), 
so Ylm(θ,ϕ) = Θlm(θ) Φm(ϕ), which equals

That’s great — you’re halfway there, but you still have to determine the form 
of Θ lm(θ), the eigenfunction of L2. That’s coming up next.

The eigenfunctions of L2 in  
spherical coordinates
Now you’re going to tackle the eigenfunction of L2, Θlm(θ). You already know 
that in spherical coordinates, the L2 operator looks like this:

That’s quite an operator. And you know that

So applying the L2 operator to Ylm(θ,ϕ) gives you the following:
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And because L2Ylm(θ, ϕ) = l(l + 1)ℏ2Ylm(θ, ϕ) = l(l + 1)ℏ2Θlm(θ)Φm(ϕ), this equa-
tion becomes

Wow, what have you gotten in to? Cancelling terms and subtracting the right-
hand side from the left finally gives you this differential equation:

Combining terms and dividing by eimϕ gives you the following:

Holy cow! Isn’t there someone who’s tried to solve this kind of differential 
equation before? Yes, there is. This equation is a Legendre differential equa-
tion, and the solutions are well-known. (Whew!) In general, the solutions take 
this form:

Θlm(θ) = ClmPlm(cosθ)

where Plm(cosθ) is the Legendre function.

 

So what are the Legendre functions? You can start by separating out the m 
dependence, which works this way with the Legendre functions:

where Pl(x) is called a Legendre polynomial and is given by the Rodrigues 
 formula:
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You can use this equation to derive the first few Legendre polynomials like this:

 ✓ P0(x) = 1

 ✓ P1(x) = x

 ✓ P2(x) = 1/2 (3x2 – 1)

 ✓ P3(x) = 1/2 (5x3 – 3x)

 ✓ P4(x) = 1/8 (35x4 – 30x2 + 3)

 ✓ P5(x) = 1/8 (63x5 – 70x3 + 15x)

and so on. That’s what the first few Pl(x) polynomials look like. So what do the 
associated Legendre functions, Plm(x) look like? You can also calculate them. You 
can start off with Pl0(x), where m = 0. Those are easy because Pl0(x) = Pl(x), so

 ✓ P10(x) = x

 ✓ P20(x) = 1/2 (3x2 – 1)

 ✓ P30(x) = 1/2 (5x3 – 3x)

Also, you can find that

 ✓ P11(x) = (1 – x2)1/2

 ✓ P21(x) = 3x(1 – x2)1/2

 ✓ P22(x) = 3(1 – x2)

 ✓ 

 ✓ P32(x) = 15x(1 – x2)

 ✓ P33(x) = 15x(1 – x2)3/2

These equations give you an overview of what the Plm functions look like, 
which means you’re almost done. As you may recall, Θlm(θ), the θ part of 
Ylm(θ, ϕ), is related to the Plm functions like this:

Θlm(θ) = ClmPlm(cosθ)

And now you know what the Plm functions look like, but what do Clm, the con-
stants, look like? As soon as you have those, you’ll have the complete angular 
momentum eigenfunctions, Ylm(θ, ϕ), because Ylm(θ, ϕ) = Θlm(θ)Φm(ϕ).
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You can go about calculating the constants Clm the way you always calculate 
such constants of integration in quantum physics — you normalize the eigen-
functions to 1. For Ylm(θ,ϕ) = Θlm(θ)Φm(ϕ), that looks like this:

Substitute the following three quantities in this equation:

 ✓ Ylm(θ, ϕ) = Θlm(θ) Φm(ϕ)

 ✓ 

 ✓ Θlm(θ) = ClmPlm(cosθ)

You get the following:

The integral over ϕ gives 2π, so this becomes

You can evaluate the integral to this:

So in other words:

Which means that 
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So Ylm(θ, ϕ) = Θlm(θ)Φm(ϕ), which is the angular momentum eigenfunction in 
spherical coordinates, is

The functions given by this equation are called the normalized spherical har-
monics. Here are what the first few normalized spherical harmonics look like:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

 ✓ 

 ✓ 

In fact, you can use these relations to convert the spherical harmonics to 
rectangular coordinates:

 ✓ 

 ✓ 

 ✓ 

Substituting these equations into 

 gives you the 

spherical harmonics in rectangular coordinates:

 ✓ 

 ✓ 
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 ✓ 

 ✓ 

 ✓ 

 ✓ 
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Chapter 6

Getting Dizzy with Spin
In This Chapter
▶ Discovering spin with the Stern-Gerlach experiment

▶ Looking at eigenstates and spin notation

▶ Understanding fermions and bosons

▶ Comparing the spin operators with angular momentum operators

▶ Working with spin 1/2 and Pauli matrices

P 
hysicists have suggested that orbital angular momentum is not the 
only kind of angular momentum present in an atom — electrons could 

also have intrinsic built-in angular momentum. This kind of built-in angular 
momentum is called spin. Whether or not electrons actually spin will never 
be known — they’re as close to point-like particles as you can come, without 
any apparent internal structure. Yet the fact remains that they have intrinsic 
angular momentum. And that’s what this chapter is about — the intrinsic, 
built-in quantum mechanical spin of subatomic particles.

The Stern-Gerlach Experiment and  
the Case of the Missing Spot

The Stern-Gerlach experiment unexpectedly revealed the existence of spin 
back in 1922. Physicists Otto Stern and Walther Gerlach sent a beam of silver 
atoms through the poles of a magnet — whose magnetic field was in the z 
direction — as you can see in Figure 6-1.
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Figure 6-1: 
The Stern-

Gerlach 
experiment.

 

Spin up

Spin down

Silver atoms

  Magnet Screen

Because 46 of silver’s 47 electrons are arranged in a symmetrical cloud, they 
contribute nothing to the orbital angular momentum of the atom. The 47th 
electron can be in

 ✓ The 5s state, in which case its angular momentum is l = 0 and the z com-
ponent of that angular momentum is 0

 ✓ The 5p state, in which case its angular momentum is l = 1, which means 
that the z component of its angular momentum can be –1, 0, or 1

That means that Stern and Gerlach expected to see one or three spots on the 
screen you see at right in Figure 6-1, corresponding to the different states of 
the z component of angular momentum.

But famously, they saw only two spots. This puzzled the physics community 
for about three years. Then, in 1925, physicists Samuel A. Goudsmit and 
George E. Uhlenbeck suggested that electrons contained intrinsic angular 
momentum — and that intrinsic angular momentum is what gave them a mag-
netic moment that interacted with the magnetic field. After all, it was appar-
ent that some angular momentum other than orbital angular momentum was 
at work here. And that built-in angular momentum came to be called spin.

The beam of silver atoms divides in two, depending on the spin of the 47th 
electron in the atom, so there are two possible states of spin, which came to 
be known as up and down.
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Spin is a purely quantum mechanical effect, and there’s no real classical 
analog. The closest you can come is to liken spin to the spin of the Earth as 
it goes around the sun — that is, the Earth has both spin (because it’s rotat-
ing on its axis) and orbital angular momentum (because it’s revolving around 
the sun). But even this picture doesn’t wholly explain spin in classical terms, 
because it’s conceivable that you could stop the Earth from spinning. But you 
can’t stop electrons from possessing spin, and that also goes for other sub-
atomic particles that possess spin, such as protons.

 

Spin doesn’t depend on spatial degrees of freedom; even if you were to have 
an electron at rest (which violates the uncertainty principle), it would still pos-
sess spin.

Getting Down and Dirty with  
Spin and Eigenstates

Spin throws a bit of a curve at you. When dealing with orbital angular 
momentum (see Chapter 5), you can build angular momentum operators 
because orbital angular momentum is the product of momentum and radius. 
But spin is built in; there’s no momentum operator involved. So here’s the 
crux: You cannot describe spin with a differential operator, as you can for 
orbital angular momentum.

In Chapter 5, I show how orbital angular momentum can be reduced to these 
differential operators:

 ✓ 

 ✓ 

 ✓ 

And you can find eigenfunctions for angular momentum, such as Y20:
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But because you can’t express spin using differential operators, you can’t 
find eigenfunctions for spin as you do for angular momentum. So that means 
that you’re left with the bra and ket way of looking at things (bras and kets 
aren’t tied to any specific representation in spatial terms).

In Chapter 5, you also take a look at things in angular momentum terms, 
introducing the eigenstates of orbital angular momentum like this: |l , m> 
(where l is the angular momentum quantum number and m is the quantum 
number of the z component of angular momentum).

You can use the same notation for spin eigenstates. As with orbital angu-
lar momentum, you can use a total spin quantum number and a quantum 
number that indicates the spin along the z axis (Note: There’s no true z axis 
built in when it comes to spin — you introduce a z axis when you apply a 
magnetic field; by convention, the z axis is taken to be in the direction of the 
applied magnetic field).

 The letters given to the total spin quantum number and the z-axis component 
of the spin are s and m (you sometimes see them written as s and ms). In other 
words, the eigenstates of spin are written as |s, m>.

So what possible values can s and m take? That’s coming up next.

Halves and Integers: Saying Hello  
to Fermions and Bosons

In analogy with orbital angular momentum, you can assume that m (the z-axis 
component of the spin) can take the values –s, –s + 1, ..., s – 1, and s, where s 
is the total spin quantum number. For electrons, Stern and Gerlach observed 
two spots, so you have 2s + 1 = 2, which means that s = 1/2. And therefore, m 
can be +1/2 or –1/2. So here are the possible eigenstates for electrons in terms 
of spin:

|1/2, 1/2>

|1/2, –1/2>

So do all subatomic particles have s = 1/2? Nope. Here are their options:

 ✓ Fermions: In physics, particles with half-integer spin are called fermions. 
They include electrons, protons, neutrons, and so on, even quarks. For 
example, electrons, protons, and neutrons have spin s = 1/2, and delta 
particles have s = 3/2.
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 ✓ Bosons: Particles with integer spin are called bosons. They include pho-
tons, pi mesons, and so on; even the postulated particles involved with 
the force of gravity, gravitons, are supposed to have integer spin. For 
example, pi mesons have spin s = 0, photons have s = 1, and so forth.

So for electrons, the spin eigenstates are |1/2, 1/2> and |1/2, –1/2>. For photons, 
the eigenstates are |1, 1>, |1, 0>, and |1, –1>. Therefore, the possible eigen-
states depend on the particle you’re working with.

Spin Operators: Running Around  
with Angular Momentum

Because spin is a type of built-in angular momentum, the spin operators have 
a lot in common with the orbital angular momentum operators. In Chapter 5, 
I discuss the orbital angular momentum operators L2 and Lz, and as you may 
expect, there are analogous spin operators, S2 and Sz. However, these opera-
tors are just operators; they don’t have a differential form like the orbital 
angular momentum operators do.

In fact, all the orbital angular momentum operators, such as Lx, Ly, and Lz, 
have analogs here: Sx, Sy, and Sz. The commutation relations among Lx, Ly, 
and Lz are the following:

 ✓ [Lx, Ly] = iℏLz

 ✓ [Ly, Lz] = iℏLx

 ✓ [Lz, Lx] = iℏLy

And they work the same way for spin:

 ✓ [Sx, Sy] = iℏSz

 ✓ [Sy, Sz] = iℏSx

 ✓ [Sz, Sx] = iℏSy

The L2 operator gives you the following result when you apply it to an orbital 
angular momentum eigenstate:

L2|l, m> = l(l + 1)ℏ2|l, m>
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And just as you’d expect, the S2 operator works in an analogous fashion:

S2|s, m> = s(s + 1)ℏ2|s, m>

The Lz operator gives you this result when you apply it to an orbital angular 
momentum eigenstate (see Chapter 5):

Lz|l, m> = mℏ|l, m>

And by analogy, the Sz operator works this way:

Sz|s, m> = mℏ|s, m>

What about the raising and lowering operators, L+ and L–? Are there analogs 
for spin? In angular momentum terms, L+ and L– work like this:

 ✓ 

 ✓ 

There are spin raising and lowering operators as well, S+ and S–, and they 
work like this:

 ✓ 

 ✓ 

In the next section, I take a special look at particles with spin 1/2.

Working with Spin 1/2 and Pauli Matrices
Spin 1/2 particles (fermions) need a little extra attention. The eigenvalues of 
the S2 operator here are
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And the eigenvalues of the Sz operator are

You can represent these two equations graphically as shown in Figure 6-2, 
where the two spin states have different projections along the z axis.

 

Figure 6-2: 
Spin magni-

tude and z 
projection.
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Spin 1/2 matrices
Time to take a look at the spin eigenstates and operators for particles of spin 
1/2 in terms of matrices. There are only two possible states, spin up and spin 
down, so this is easy. First, you can represent the eigenstate |1/2, 1/2> like this:

And the eigenstate |1/2, –1/2> looks like this:

Now what about spin operators like S2? The S2 operator looks like this in 
matrix terms:
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And this works out to be the following:

Similarly, you can represent the Sz operator this way:

This works out to

Using the matrix version of Sz, for example, you can find the z component  
of the spin of, say, the eigenstate |1/2, –1/2>. Finding the z component looks 
like this:

Sz |1/2, –1/2>

Putting this in matrix terms gives you this matrix product:

Here’s what you get by performing the matrix multiplication:

And putting this back into ket notation, you get the following:
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How about the raising and lowering operators S+ and S–? The S+ operator 
looks like this:

And the lowering operator looks like this:

So, for example, you can figure out what S+|1/2, –1/2> is. Here it is in matrix terms:

Performing the multiplication gives you this:

Or in ket form, it’s S+|1/2, –1/2> = ℏ|1/2, 1/2>. Cool.

Pauli matrices
Sometimes, you see the operators Sx, Sy, and Sz written in terms of Pauli 
 matrices, σx, σy, and σz. Here’s what the Pauli matrices look like:

σ x =
0 1

1 0

σ y

i

i

=

−0

0
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σ z =

−
1 0

0 1

Now you can write Sx, Sy, and Sz in terms of the Pauli matrices like this:

S x x= �
2

σ

S y y= �
2

σ

S z z= �
2

σ

Whoo! And that concludes your look at spin.



Part IV
Multiple Dimensions: 

Going 3D with 
Quantum Physics



In this part . . . 

T 
he previous parts deal mostly with particles in one-
dimensional systems. This part expands that cover-

age to three dimensions, like in the real world. You see 
how to handle quantum physics in three-dimensional 
coordinates — whether rectangular or spherical — which 
lays the groundwork for working with electrons in atoms.



Chapter 7

Rectangular Coordinates: Solving 
Problems in Three Dimensions

In This Chapter
▶ Exploring the Schrödinger equation in the x, y, and z dimensions

▶ Working with free particles in 3D

▶ Getting into rectangular potentials

▶ Seeing harmonic oscillators in 3D space

O 
ne-dimensional problems are all very well and good, but the real world 
has three dimensions. This chapter is all about leaving one-dimensional 

potentials behind and starting to take a look at spinless quantum mechanical 
particles in three dimensions.

Here, you work with three dimensions in rectangular coordinates, starting 
with a look at the Schrödinger equation in glorious, real-life 3D. You then 
delve into free particles, box potentials, and harmonic oscillators. Note: By 
the way, the next chapter uses spherical coordinates because some problems 
are better in one system than the other. Problems with spherical symmetry 
are best handled in spherical coordinates, for example.

The Schrödinger Equation: Now in 3D!
In one dimension, the time-dependent Schrödinger equation (of the type in 
Chapters 3 and 4 that let you find the wave function) looks like this:
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And you can generalize that into three dimensions like this:

Using the Laplacian operator, you can recast this into a more compact form. 
Here’s what the Laplacian looks like:

And here’s the 3D Schrödinger equation using the Laplacian:

To solve this equation, when the potential doesn’t vary with time, break out 
the time-dependent part of the wave function:

Here, ψ(x, y, z) is the solution of the time-independent Schrödinger equation, 
and E is the energy:

So far, so good. But now you’ve run into a wall — the expression  
is in general very hard to deal with, so the current equation is in general very 
hard to solve.

So what should you do? Well, you can focus on the case in which the equa-
tion is separable — that is, where you can separate out the x, y, and z depen-
dence and find the solution in each dimension separately. In other words, in 
separable cases, the potential, V(x, y, z), is actually the sum of the x, y, and z 
potentials:

V(x, y, z) = Vx(x) + Vy(y) + Vz(z)

Now you can break the Hamiltonian in 

 into three Hamilitonians, Hx, Hy, and Hz:
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(Hx + Hy + Hz)ψ(x, y, z) = Eψ(x, y, z)

where

 ✓ 

 ✓ 

 ✓ 

When you divide up the Hamiltonian as in (Hx + Hy + Hz)ψ(x, y, z) = Eψ(x, y, z), 
you can also divide up the wave function that solves that equation. In par-
ticular, you can break the wave function into three parts, one for x, y, and z:

ψ(x, y, z) = X(x)Y(y)Z(z)

Where X(x), Y(y), and Z(z) are functions of the coordinates x, y, and z and are 
not to be confused with the position operators. This separation of the wave 
function into three parts is  going to make life considerably easier, because 
now you can break the Hamiltonian up into three separate operators added 
together:

E = Ex + Ey + Ez

So you now have three independent Schrödinger equations for the three 
dimensions:

 ✓ 

 ✓ 

 ✓ 
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This system of independent differential equations looks a lot easier to solve 
than (Hx + Hy + Hz)ψ(x, y, z) = Eψ(x, y, z). In essence, you’ve broken the three-
dimensional Schrödinger equation into three one-dimensional Schrödinger 
equations. That makes solving 3D problems tractable.

Solving Three-Dimensional  
Free Particle Problems

Consider the free particle you see in three dimensions in Figure 7-1.

 

Figure 7-1:  
A free  

particle  
in 3D.

 

z

x

y

Because the particle is traveling freely, V(x) = V(y) = V(z) = 0. So the three 
independent Schrödinger equations for the three dimensions covered in the 
preceding section become the following:



173 Chapter 7: Rectangular Coordinates: Solving Problems in Three Dimensions

 ✓ 

 ✓ 

 ✓
  

If you rewrite these equations in terms of the wave number, k, where 

, then these equations become the following:

 ✓ 

 ✓ 

 ✓ 

In this section, you take a look at the solutions to these equations, find the 
total energy, and add time dependence.

The x, y, and z equations
Take a look at the x equation for the free particle, . You 
can write its general solution as

X(x) = Axe
ikx 

x

Y(y) = Aye
iky y

Z(z) = Aze
ikz 

z

where Ax, Ay, and Az are constants. 
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Because ψ(x, y, z) = X(x)Y(y)Z(z), you get this for ψ(x, y, z):

where A= Ax Ay Az.  
 
The part in the parentheses in the exponent is the dot product of the vectors 
k and r, k · r. That is, if the vector a = (ax, ay, az) in terms of components and 
the vector b = (bx, by, bz), then the dot product of a and b is a · b = (axbx, ayby, 
azbz). So here’s how you can rewrite the ψ(x, y, z) equation:

Finding the total energy equation
The total energy of the free particle is the sum of the energy in three  
dimensions:

E = Ex + Ey + Ez

With a free particle, the energy of the x component of the wave function is 

. And this equation works the same way for the y and z compo-

nents, so here’s the total energy of the particle:
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Note that kx
2 + ky

2 + kz
2 is the square of the magnitude of k — that is, k . k= k2  

Therefore, you can write the equation for the total energy as

 Note that because E is a constant, no matter where the particle is pointed, 

 all the eigenfunctions of , , and 

  are infinitely degenerate as you vary kx, ky, and kz.

Adding time dependence and  
getting a physical solution
You can add time dependence to the solution for ψ(x, y, z), giving you ψ(x, y, 

z, t), if you remember that, for a free particle, . 
That equation gives 

you this form for ψ(x, y, z, t):

Because , the equation turns into

In fact, now that the right side of the equation is in terms of the radius vector 
r, you can make the left side match:

That’s the solution to the Schrödinger equation, but it’s unphysical (as I 
discuss for the one-dimensional Schrödinger equation for a free particle in 
Chapter 3). Why? Trying to normalize this equation in three dimensions, for 
example, gives you the following, where A is a constant:
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Thus, the integral diverges and you can’t normalize ψ(r, t) as I’ve written it. 
So what do you do here to get a physical particle?

 

The key to solving this problem is realizing that if you have a number of 
solutions to the Schrödinger equation, then any linear combination of those 
solutions is also a solution. In other words, you add various wave functions 
together so that you get a wave packet, which is a collection of wave functions 
of the form eik · r such that

 ✓ The wave functions interfere constructively at one location.

 ✓ They interfere destructively (go to zero) at all other locations.

Look at the time-independent version:

However, for a free particle, the energy states are not separated into distinct 
bands; the possible energies are continuous, so people write this summation 
as an integral:

So what is ϕ(k)? It’s the three-dimensional analog of ϕ(k) that you find in 
Chapter 3; that is, it’s the amplitude of each component wave function. You 
can find ϕ(k) from the Fourier transform of ψ1(x) = Aeik1x + Be–ik1x (where x < 0) 
like this:

In practice, you choose ϕ(k) yourself. Look at an example, using the following 
form for ϕ(k), which is for a Gaussian wave packet (Note: The exponential 
part is what makes this a Gaussian wave form):
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where a and A are constants. You can begin by normalizing ϕ(k) to determine 
what A is. Here’s how that works:

Okay. Performing the integral gives you

which means that the wave function is

You can evaluate this equation to give you the following, which is what the 
time-independent wave function for a Gaussian wave packet looks like in 3D:

Okay, that’s how things look when V(r) = 0. But can’t you solve some prob-
lems when V(r) is not equal to zero? Yep, you sure can. Check out the next 
section.

Getting Squared Away with  
3D Rectangular Potentials

This section takes a look at a 3D potential that forms a box, as you see in 
Figure 7-2. You want to get the wave functions and the energy levels here.
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Figure 7-2:  
A box 

potential  
in 3D.
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Inside the box, say that V(x, y, z) = 0, and outside the box, say that V(x, y, z) = 
∞. So you have the following:

Dividing V(x, y, z) into Vx(x), Vy(y), and Vz(z) gives you

 

✓

 

 

✓

 

 

✓
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Okay, because the potential goes to infinity at the walls of the box, the wave 
function, ψ(x, y, z), must go to zero at the walls, so that’s your constraint. In 
3D, the Schrödinger equation looks like this in three dimensions:

Writing this out gives you the following:

Take this dimension by dimension. Because the potential is separable, you 
can write ψ(x, y, z) as ψ(x, y, z) = X(x)Y(y)Z(z). Inside the box, the potential 
equals zero, so the Schrödinger equation looks like this for x, y, and z:

 ✓ 

 ✓ 

 ✓ 
 

The next step is to rewrite these equations in terms of the wave number, k. 

Because , you can write the Schrödinger equations for x, y, and z as 

the following equations:

 ✓ 

 ✓ 

 ✓ 
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Start by taking a look at the equation for x. Now you have something to work 

with — a second order differential equation, . Here are 

the two independent solutions to this equation, where A and B are yet to be 
determined:

 ✓ X1(x) = A sin(kx)

 ✓ X2(x) = B cos(kx)

So the general solution of  is the sum of the last two 
equations:

X(x) = A sin(kx) + B cos(kx)

Great. Now take a look at determining the energy levels.

Determining the energy levels
To be able to determine the energy levels of a particle in a box potential, you 
need an exact value for X(x) — not just one of the terms of the constants A 
and B. You have to use the boundary conditions to find A and B. What are the 
boundary conditions? The wave function must disappear at the boundaries 
of the box, so

 ✓ X(0) = 0

 ✓ X(Lx) = 0

So the fact that ψ(0) = 0 tells you right away that B must be 0, because cos(0) 
= 1. And the fact that X(Lx) = 0 tells you that X(Lx) = A sin(kxLx) = 0. Because 
the sine is 0 when its argument is a multiple of π, this means that

And because , it means that
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That’s the energy in the x component of the wave function, corresponding to 
the quantum numbers 1, 2, 3, and so on. The total energy of a particle of mass 

m inside the box potential is E = Ex + Ey + Ez. Following , you 

have this for Ey and Ez:

So the total energy of the particle is E = Ex + Ey + Ez, which equals this:

And there you have the total energy of a particle in the box potential.

Normalizing the wave function
Now how about normalizing the wave function ψ(x, y, z)? In the x dimension, 
you have this for the wave equation:

So the wave function is a sine wave, going to zero at x = 0 and x = Lz. You can 
also insist that the wave function be normalized, like this:
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By normalizing the wave function, you can solve for the unknown constant A. 
Substituting for X(x) in the equation gives you the following:

Therefore,  becomes , which means you 

can solve for A:

Great, now you have the constant A, so you can get X(x):

Now get ψ(x, y, z). You can divide the wave function into three parts:

ψ(x, y, z) = X(x)Y(y)Z(z)

By analogy with X(x), you can find Y(y) and Z(z):

So ψ(x, y, z) equals the following:
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That’s a pretty long wave function. In fact, when you’re dealing with a box 
potential, the energy looks like this:

Using a cubic potential
When working with a box potential, you can make things simpler by assum-
ing that the box is actually a cube. In other words, L = Lx = Ly = Lz. When the 
box is a cube, the equation for the energy becomes

So, for example, the energy of the ground state, where nx = ny = nz = 1, is given 
by the following, where E111 is the ground state:

Note that there’s some degeneracy in the energies; for example, note that

 ✓ E211 (nx = 2, ny = 1, nz = 1) is 

 ✓ E121 (nx = 1, ny = 2, nz = 1) is 

 ✓ E112 (nx = 1, ny = 1, nz = 2) is 

So E211 = E121 = E112, which means that the first excited state is threefold 
degenerate, matching the threefold equivalence in dimensions.
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 In general, when you have symmetry built into the physical layout (as you do 
when L = Lx = Ly = Lz), you have degeneracy.

The wave function for a cubic potential is also easier to manage than the 
wave function for a general box potential (where the sides aren’t of the same 
length). Here’s the wave function for a cubic potential:

So, for example, here’s the wave function for the ground state (nx = 1, ny = 1, 
nz = 1), ψ111(x, y, z):

And here’s ψ211(x, y, z):

And ψ121(x, y, z):

Springing into 3D Harmonic Oscillators
In one dimension, the general particle harmonic oscillator (which I first 
describe in Chapter 4) looks like Figure 7-3, where the particle is under the 
influence of a restoring force — here illustrated as a spring.
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Figure 7-3: 
A harmonic 

oscillator.
 

The restoring force has the form Fx = –kxx in one dimension, where kx is  
the constant of proportionality between the force on the particle and the 
location of the particle. The potential energy of the particle as a function 

of location x is . This is also sometimes written as

where .

In this section, you take a look at the harmonic oscillator in three dimen-
sions. In three dimensions, the potential looks like this:

Now that you have a form for the potential, you can start talking in terms of 
Schrödinger’s equation:
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Substituting in for the three-dimension potential, V(x, y, z), gives you this 
equation:

Take this dimension by dimension. Because you can separate the potential 
into three dimensions, you can write ψ(x, y, z) as ψ(x, y, z) = X(x)Y(y)Z(z). 
Therefore, the Schrödinger equation looks like this for x:

You solve that equation in Chapter 4, where you get this next solution:

where  and nx = 0, 1, 2, and so on. The Hnx
 term indicates a 

hermite polynomial, which looks like this:

 ✓ H0(x) = 1

 ✓ H1(x) = 2x

 ✓ H2(x) = 4x2 – 2

 ✓ H3(x) = 8x3 – 12x

 ✓ H4(x) = 16x4 – 48x2 + 12

 ✓ H5(x) = 32x5 – 160x3 + 120x

Therefore, you can write the wave function like this:
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That’s a relatively easy form for a wave function, and it’s all made possible by 
the fact that you can separate the potential into three dimensions.

What about the energy of the harmonic oscillator? The energy of a one-

dimensional harmonic oscillator is . And by analogy, the 

energy of a three-dimensional harmonic oscillator is given by

Note that if you have an isotropic harmonic oscillator, where ωx = ωy = ωz = ω, 
the energy looks like this:

As for the cubic potential, the energy of a 3D isotropic harmonic oscillator is 
degenerate. For example, E112 = E121 = E211. In fact, it’s possible to have more 
than threefold degeneracy for a 3D isotropic harmonic oscillator — for exam-
ple, E200 = E020 = E002 = E110 = E101 = E011.

 

In general, the degeneracy of a 3D isotropic harmonic oscillator is

where n = nx + ny + nz.
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Chapter 8

Solving Problems in Three 
Dimensions: Spherical 

Coordinates
In This Chapter
▶ Problems in spherical coordinates

▶ Free particles in spherical coordinates

▶ Square well potentials

▶ Isotropic harmonic oscillators

I 
n your other life as a sea captain-slash-pilot, you’re probably pretty 
familiar with latitude and longitude — coordinates that basically name a 

couple of angles as measured from the center of the Earth. Put together the 
angle east or west, the angle north or south, and the all-important distance 
from the center of the Earth, and you have a vector that gives a good descrip-
tion of location in three dimensions. That vector is part of a spherical coordi-
nate system.

Navigators talk more about the pair of angles than the distance (“Earth’s sur-
face” is generally specific enough for them), but quantum physicists find both 
angles and radius length important. Some 3D quantum physics problems even 
allow you to break down a wave function into two parts: an angular part and a 
radial part.

In this chapter, I discuss three-dimensional problems that are best handled 
using spherical coordinates. (For 3D problems that work better in rectangu-
lar coordinate systems, see Chapter 7.)
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A New Angle: Choosing Spherical 
Coordinates Instead of Rectangular

Say you have a 3D box potential, and suppose that the potential well that the 
particle is trapped in looks like this, which is suited to working with rectangu-
lar coordinates:

Because you can easily break this potential down in the x, y, and z directions, 
you can break the wave function down that way, too, as you see here:

ψ(x, y, z) = X(x)Y(y)Z(z)

Solving for the wave function gives you the following normalized result in 
rectangular coordinates:

The energy levels also break down into separate contributions from all three 
rectangular axes:

E = Ex + Ey + Ez

And solving for E gives you this equation (from Chapter 7):
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But what if the potential well a particle is trapped in has spherical symmetry, 
not rectangular? For example, what if the potential well were to look like this, 
where r is the radius of the particle’s location with respect to the origin and 
where a is a constant?

Clearly, trying to stuff this kind of problem into a rectangular-coordinates 
kind of solution is only asking for trouble, because although you can do it, it 
involves lots of sines and cosines and results in a pretty complex solution. A 
much better tactic is to solve this kind of a problem in the natural coordinate 
system in which the potential is expressed: spherical coordinates.

 Figure 8-1 shows the spherical coordinate system along with the correspond-
ing rectangular coordinates, x, y, and z. In the spherical coordinate system, 
you locate points with a radius vector named r, which has three components:

 ✓ An r component (the length of the radius vector)

 ✓ θ (the angle from z axis to the the r vector)

 ✓ ϕ (the angle from the x axis to the the r vector)

 

Figure 8-1:  
The 

spherical 
coordinate 

system.
 

x

z

yr
θ

φ
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Taking a Good Look at Central  
Potentials in 3D

This chapter focuses on problems that involve central potentials — that is, 
spherically symmetrical potentials, of the kind where V(r) = V(r). In other 
words, the potential is independent of the vector nature of the radius vector; 
the potential depends on only the magnitude of vector r (which is r), not on 
the angle of r.

When you work on problems that have a central potential, you’re able to 
separate the wave function into a radial part (which depends on the form of 
the potential) and an angular part, which is a spherical harmonic. Read on.

Breaking down the Schrödinger equation
The Schrödinger equation looks like this in three dimensions, where Δ is the 
Laplacian operator (see Chapter 2 for more on operators):

And the Laplacian operator looks like this in rectangular coordinates:

In spherical coordinates, it’s a little messy, but you can simplify later. Check 
out the spherical Laplacian operator:

Here, L2 is the square of the orbital angular momentum:

So in spherical coordinates, the Schrödinger equation for a central potential 
looks like this when you substitute in the terms:
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 Take a look at the preceding equation. The first term actually corresponds to 
the radial kinetic energy — that is, the kinetic energy of the particle moving 
in the radial direction. The second term corresponds to the rotational kinetic 
energy. And the third term corresponds to the potential energy.

So what can you say about the solutions to this version of the Schrödinger 
equation? You can note that the first term depends only on r, as does the 
third, and that the second term depends only on angles. So you can break 
the wave function, ψ(r) = ψ(r, θ, ϕ), into two parts:

 ✓ A radial part

 ✓ A part that depends on the angles

This is a special property of problems with central potentials.

The angular part of ψ(r, θ, ϕ)
When you have a central potential, what can you say about the angular part 
of ψ(r, θ, ϕ)? The angular part must be an eigenfunction of L2, and as I show in 
Chapter 5, the eigenfunctions of L2 are the spherical harmonics, Ylm(θ, ϕ) (where 
l is the total angular momentum quantum number and m is the z component of 
the angular momentum’s quantum number). The spherical harmonics equal

Here are the first several normalized spherical harmonics:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

 ✓ 

 ✓ 
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That’s what the angular part of the wave function is going to be: a spherical 
harmonic.

The radial part of ψ(r, θ, ϕ)
You can give the radial part of the wave function the name Rnl(r), where n 
is a quantum number corresponding to the quantum state of the radial part 
of the wave function and l is the total angular momentum quantum number. 
The radial part is symmetric with respect to angles, so it can’t depend on m, 
the quantum number of the z component of the angular momentum. In other 
words, the wave function for particles in central potentials looks like the fol-
lowing equation in spherical coordinates:

ψ(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ)

The next step is to solve for Rnl(r) in general. Substituting ψ(r, θ, ϕ)  
from the preceding equation into the Schrödinger equation, 

, gives you

Okay, what can you make of this? First, note (from Chapter 5) that the spheri-
cal harmonics are eigenfunctions of L2 (that’s the whole reason for using 
them), with eigenvalue l(l + 1)ℏ2:

So the last term in this equation is simply l(l + 1)ℏ2. That means that 

 takes the form 

, which equals

 

The preceding equation is the one you use to determine the radial part of the 
wave function, Rnl(r). It’s called the radial equation for a central potential.
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When you solve the radial equation for Rnl(r), you can then find ψ(r, θ, ϕ) 
because you already know Ylm(θ,ϕ):

ψ(r, θ, ϕ) = Rnl(r)Ylm(θ,ϕ)

Thus, this chapter simply breaks down to finding the solution to the radial 
equation.

Note: Incidentally, the radial equation is really a differential equation in one 
dimension: the r dimension. By selecting only problems that contain central 
potentials, you reduce the general problem of finding the wave function 
of particles trapped in a three-dimensional spherical potential to a one-
dimensional differential equation.

Handling Free Particles in 3D  
with Spherical Coordinates

In this section and the next, you take a look at some example central poten-
tials to see how to solve the radial equation (see the preceding section for 
more on the radial part). Here, you work with a free particle, in which no 
potential at all constrains the particle.

The wave function in spherical coordinates takes this form:

And you know all about Ylm(θ, ϕ), because it gives you the spherical harmon-
ics. The problem is now to solve for the radial part, Rnl(r). Here’s the radial 
equation:

For a free particle, V(r) = 0, so the radial equation becomes
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The way you usually handle this equation is to substitute ρ for kr, where k = 
(2mE)½/ ℏ, and because we have a version of the same equation for each n 
index it is convenient to simply remove it, so that Rnl (r) becomes Rl (kr) =  
Rl (ρ). This substitution means that  

 becomes the following:

In this section, you see how the spherical Bessel and Neumann functions 
come to the rescue when you’re dealing with free particles.

The spherical Bessel and  
Neumann functions
The radial part of the equation, , 

looks tough, but the solutions turn out to be well-known — this equation is  
called the spherical Bessel equation, and the solution is a combination of the  
spherical Bessel functions [jl(ρ)] and the spherical Neumann functions [nl(ρ)]:

Rl(ρ) = Al jl(ρ) + Blnl(ρ)

 where Al and Bl are constants. So what are the spherical Bessel functions and 
the spherical Neumann functions? The spherical Bessel functions are given by

Here’s what the first few iterations of jl(ρ) look like:

 ✓ 

 ✓ 

 ✓ 

How about the spherical Neumann functions? The spherical Neumann func-
tions are given by
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Here are the first few iterations of nl(ρ):

 ✓ 

 ✓ 

 ✓ 

The limits for small and large ρ
According to the spherical Bessel equation, the radial part of the wave func-
tion for a free particle looks like this:

Rl(ρ) = Al jl(ρ) + Blnl(ρ)

Take a look at the spherical Bessel functions and Neumann functions for 
small and large ρ:

 ✓ Small ρ: The Bessel functions reduce to 
.

  The Neumann functions reduce to 
.

 ✓ Large ρ: The Bessel functions reduce to 
.

  The Neumann functions reduce to .

 Note that the Neumann functions diverge for small ρ. Therefore, any wave func-
tion that includes the Neumann functions also diverges, which is unphysical. 
So the Neumann functions aren’t acceptable functions in the wave function.

That means the wave function ψ(r, θ, ϕ), which equals Rnl(r) Ylm(θ, ϕ), equals 
the following:

ψ(r, θ, ϕ) = Al jl(kr) Ylm(θ, ϕ)

where k = (2mEn)
1/2/ℏ. Note that because k can take any value, the energy 

levels are continuous.
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Handling the Spherical  
Square Well Potential

Take a look at a spherical square well potential of the kind you can see in 
Figure 8-2 (I introduce square wells in Chapter 3). This potential traps particles 
inside it when E < 0 and scatters particles when E > 0. Mathematically, you can 
express the square well potential like this:

 

Figure 8-2: 
The  

spherical 
square well 

potential.
 

Note that this potential is spherically symmetric and varies only in r, not in θ 
or ϕ. You’re dealing with a central potential, so you can break the wave func-
tion into an angular part and a radial part (see the earlier section “Taking a 
Good Look at Central Potentials in 3D”).

This section has you take a look at the radial equation, handling the two 
cases of 0 < r < a and r > a separately.
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Inside the square well: 0 < r < a
For a spherical square well potential, here’s what the radial equation looks 
like for the region 0 < r < a:

In this region, V(r) = –V0, so you have

Taking the V0 term over to the right gives you the following:

And here’s what dividing by r gives you:

Then, multiplying by –2m/ℏ2, you get

Now make the change of variable ρ = kr, where k = (2m(E +V0))1/2/ℏ, so  
that Rnl(r) becomes Rl(kr) = Rl(ρ). Using this substitution means that 

 
takes the following form:

This is the spherical Bessel equation (just as you see for the free particle in 
“Handling Free Particles in 3D with Spherical Coordinates”). This time, k = 
[2m(E +V0)]1/2/ℏ, not (2mE)1/2/ℏ. That makes sense, because now the particle 
is trapped in the square well, so its total energy is E + V0, not just E.



200 Part IV: Multiple Dimensions: Going 3D with Quantum Physics 

The solution to the preceding equation is a combination of the spherical 
Bessel functions [jl(ρ)] and the spherical Neumann functions [nl(ρ)]:

Rl(ρ) = Al jl(ρ) + Blnl(ρ)

You can apply the same constraint here that you apply for a free particle: 
The wave function must be finite everywhere. For small ρ, the Bessel func-
tions look like this:

And for small ρ, the Neumann functions reduce to

So the Neumann functions diverge for small ρ, which makes them unaccept-
able for wave functions here. That means that the radial part of the wave 
function is just made up of spherical Bessel functions, where Al is a constant:

Rl(ρ) = Al jl(ρ)

The whole wave function inside the square well, ψinside(r, θ, ϕ), is a product of 
radial and angular parts, and it looks like this:

where ρinside = r(2m(E +V0))1/2/ℏ and Ylm(θ, ϕ) are the spherical harmonics.

Outside the square well: r > a
Outside the square well, in the region r > a, the particle is just like a free par-
ticle, so here’s what the radial equation looks like:

You solve this equation earlier in “Handling Free Particles in 3D with 
Spherical Coordinates”: Because ρ = kr, where k = (2mE)1/2/ℏ, you substitute ρ 
for kr so that Rnl(r) becomes Rl(kr) = Rl(ρ). Using this substitution means that 
the radial equation takes the following form:
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The solution is a combination of spherical Bessel functions and spherical 
Neumann functions, where Bl and Cl are constants:

If the energy E < 0, we must have Cl  = i Bl" so that the wave function decays 
exponentially at large distances r. So the radial solution outside the square 
well looks like this, where ρoutside = r(2mE)1/2/ℏ:

From the preceding section, you know that the wave function inside the 
square well is

So how do you find the constants Al, Bl, and Cl? You find those constants 
through continuity constraints: At the inside/outside boundary, where  
r = a, the wave function and its first derivative must be continuous. So to 
determine the constants you have to solve these two equations:

 ✓ 

 ✓ 

Getting the Goods on Isotropic  
Harmonic Oscillators

This section takes a look at spherically symmetric harmonic oscillators in 
three dimensions. In one dimension, you write the harmonic oscillator poten-
tial like this:

where  (here, k is the spring constant; that is, the restoring force of the 

harmonic oscillator is F = –kx). You can turn these two equations into three-
dimensional versions of the harmonic potential by replacing x with r:
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where . Because this potential is spherically symmetric, the wave 

function is going to be of the following form:

where you have yet to solve for the radial function Rnl(r) and where Ylm(θ, ϕ) 
describes the spherical harmonics.

As you know, the radial Schrödinger equation looks like this:

Substituting for V(r) from  gives you the following:

Well, the solution to this equation is pretty difficult to obtain, and you’re not 
going to gain anything by going through the math (pages and pages of it), so 
here’s the solution:

where exp(x) = ex and

And the La
b(r) functions are the generalized Laguerre polynomials:
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Wow. Aren’t you glad you didn’t slog through the math? Here are the first few 
generalized Laguerre polynomials:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

All right, you have the form for Rnl(r). To find the complete wave function, 
ψnlm(r, θ, ϕ), you multiply by the spherical harmonics, Ylm(θ, ϕ):

Now take a look at the first few wave functions for the isotropic harmonic 
oscillator in spherical coordinates:

 ✓ 

 ✓ 

 ✓ 

 ✓ 
  

As you can see, when you have a potential that depends on r2, as with har-
monic oscillators, the wave function gets pretty complex pretty fast.

The energy of an isotropic 3D harmonic oscillator is quantized, and you can 
derive the following relation for the energy levels:

So the energy levels start at 3ℏω/2 and then go to 5ℏω/2, 7ℏω/2, and so on.
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Chapter 9

Understanding Hydrogen Atoms
In This Chapter
▶ The Schrödinger equation for hydrogen

▶ The radial wave functions

▶ Energy degeneracy

▶ Location of the electron

N 
ot only is hydrogen the most common element in the universe, but it’s 
also the simplest. And one thing quantum physics is good at is predict-

ing everything about simple atoms. This chapter is all about the hydrogen 
atom and solving the Schrödinger equation to find the energy levels of the 
hydrogen atom. For such a small little guy, the hydrogen atom can whip up a 
lot of math — and I solve that math in this chapter.

Using the Schrödinger equation tells you just about all you need to know 
about the hydrogen atom, and it’s all based on a single assumption: that the 
wave function must go to zero as r goes to infinity, which is what makes solv-
ing the Schrödinger equation possible. I start by introducing the Schrödinger 
equation for the hydrogen atom and take you through calculating energy 
degeneracy and figuring out how far the electron is from the proton.

Coming to Terms: The Schrödinger 
Equation for the Hydrogen Atom

Hydrogen atoms are composed of a single proton, around which rotates a 
single electron. You can see how that looks in Figure 9-1.

 Note that the proton isn’t at the exact center of the atom — the center of mass 
is at the exact center. In fact, the proton is at a radius of rp from the exact 
center, and the electron is at a radius of re.
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Figure 9-1: 
The hydro-
gen atom.
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So what does the Schrödinger equation, which will give you the wave equations 
you need, look like? Well, it includes terms for the kinetic and potential energy of 
the proton and the electron. Here’s the term for the proton’s kinetic energy:

where . Here, xp is the proton’s x position, yp is the 

proton’s y position, and zp is its z position.

The Schrödinger equation also includes a term for the electron’s kinetic energy:

where . Here, xe is the electron’s x position, ye is the 

electron’s y position, and ze is its z position.
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Besides the kinetic energy, you have to include the potential energy, V(r), in 
the Schrödinger equation, which makes the time-independent Schrödinger 
equation look like this:

where ψ(re, rp) is the electron and proton’s wave function.

The electrostatic potential energy, V(r), for a central potential is given by the 
following formula, where r is the radius vector separating the two charges:

 As is common in quantum mechanics, you use CGS (centimeter-gram-second) 

 system of units, where .

So the potential due to the electron and proton charges in the hydrogen atom is

Note that r = re – rp, so the preceding equation becomes

which gives you this Schrödinger equation:

Okay, so how do you handle this equation? Find out in the next section.
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Simplifying and Splitting the 
Schrödinger Equation for Hydrogen

Here’s the usual quantum mechanical Schrödinger equation for the hydrogen 
atom:

The problem is that you’re taking into account the distance the proton is 
from the center of mass of the atom, so the math is messy. If you were to 
assume that the proton is stationary and that rp = 0, this equation would 
break down to the following, which is much easier to solve:

Unfortunately, that equation isn’t exact because it ignores the movement of 
the proton, so you see the more-complete version of the equation in quantum 
mechanics texts.

To simplify the usual Schrödinger equation, you switch to center-of-mass coor-
dinates. The center of mass of the proton/electron system is at this location:

And the vector between the electron and proton is

r = re – rp

Using vectors R and r instead of re and rp makes the Schrödinger equation 

easier to solve. The Laplacian for R is . And the Laplacian 

for r is .

How can you relate  and  to the usual equation’s  and ? After 
the algebra settles, you get
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where M = me + mp is the total mass and  is called the reduced 

mass. When you put together the equations for the center of mass, the vector 
between the proton and the electron, the total mass, and m, then the time-
independent Schrödinger equation becomes the following:

Then, given the vectors, R and r , the potential is given by,

  

The Schrödinger equation then becomes 
 

This looks easier — the main improvement being that you now have |r| in 
the denominator of the potential energy term rather than |re – rp|.

Because the equation contains terms involving either R or r but not both, the 
form of this equation indicates that it’s a separable differential equation. And 
that means you can look for a solution of the following form:

ψ(R, r) = ψ(R)ψ(r)

Substituting the preceding equation into the one before it gives you the  
following:

And dividing this equation by ψ(R)ψ(r) gives you
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Well, well, well. This equation has terms that depend on either ψ(R) or ψ(r) 
but not both. That means you can separate this equation into two equations, 
like this (where the total energy, E, equals ER + Er):

 ✓ 

 ✓ 

Multiplying  by ψ(R) gives you

And multiplying  by ψ(r) gives you

Now you have two Schrödinger equations. The next two sections show you 
how to solve them independently.

Solving for ψ(R)
In , how do you solve for ψ(R), which is the wave 

function of the center of mass of the electron/proton system? This is a 
straightforward differential equation, and the solution is

ψ(R) = Ce–ik ⋅ r

Here, C is a constant and k is the wave vector, where . 
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 In practice, ER is so small that people almost always just ignore ψ(R) — that is, 
they assume it to be 1. In other words, the real action is in ψ(r), not in ψ(R); ψ(R) 
is the wave function for the center of mass of the hydrogen atom, and ψ(r) is the 
wave function for a (fictitious) particle of mass m.

Solving for ψ(r)
The Schrödinger equation for ψ(r) is the wave function for a made-up particle of 
mass m (in practice, m ≈ me and ψ(r) is pretty close to ψ(re), so the energy, Er, is 
pretty close to the electron’s energy). Here’s the Schrödinger equation for ψ(r):

You can break the solution, ψ(r), into a radial part and an angular part (see 
Chapter 8):

ψ(r) = Rnl(r)Ylm(θ, ϕ)

The angular part of ψ(r) is made up of spherical harmonics, Ylm(θ, ϕ), so that 
part’s okay. Now you have to solve for the radial part, Rnl(r). Here’s what the 
Schrödinger equation becomes for the radial part:

where r = |r|. To solve this equation, you take a look at two cases — where 
r is very small and where r is very large. Putting them together gives you the 
rough form of the solution.

Solving the radial Schrödinger equation 
for small r
For small r , the terms                     and                , in the previous equation, 
become much smaller than the rest, so we neglect them and write the radial 
Schrödinger as,

And multiplying by 2m/ℏ2, you get



212 Part IV: Multiple Dimensions: Going 3D with Quantum Physics 

The solution to this equation is proportional to

Rnl(r) ~ Ar l + Br –l – 1

Note, however, that Rnl(r) must vanish as r goes to zero — but the r –l – 1 term 
goes to infinity. And that means that B must be zero, so you have this solution 
for small r:

Rnl(r) ~ rl

That takes care of small r. The next section takes a look at very large r.

Solving the radial Schrödinger equation 
for large r
For very large r,  becomes

Because the electron is in a bound state in the hydrogen atom, E < 0; thus, 
the solution to the preceding equation is proportional to

Rnl(r) ~ Ae–λr + Beλr

where .

Note that Rnl(r) ~ Ae–λr + Beλr diverges as r goes to infinity because of the Beλr 
term, so B must be equal to zero. That means that Rnl(r) ~ e–λr. In the next sec-
tion, you put the solutions for small r and large r together.

You got the power: Putting together  
the solution for the radial equation
Putting together the solutions for small r and large r (see the preceding sec-
tions), the Schrödinger equation gives you a solution to the radial Schrödinger 
equation of Rnl(r) = r lf(r)e–λr, where f(r) is some as-yet-undetermined function 
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of r. Your next task is to determine f(r), which you do by substituting this equa-
tion into the radial Schrödinger equation, giving you the following:

Performing the substitution gives you the following differential equation:

Quite a differential equation, eh? But just sit back and relax — you solve it 
with a power series, which is a common way of solving differential equations. 
Here’s the power-series form of f(r) to use:

Substituting the preceding equation into the one before it gives you

Changing the index of the second term from k to k – 1 gives you

Because each term in this series has to be zero, you have

Dividing by r k–2 gives you
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This equation gives the recurrence relation of the infinite series, 

. That is, if you have 

one coefficient, you can get the next one using this equation. What does that 
buy you? Well, take a look at the ratio of ak/ak–1:

Here’s what this ratio approaches as k goes to ∞:

This resembles the expansion for ex, which is

As for e2x, the ratio of successive terms is

And in the limit k → ∞, the ratio of successive expansion coefficients of e2x 

approaches :

That’s the case for e2x. For f(r), you have

Comparing these two equations, it’s apparent that
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The radial wave function, Rnl(r), looks like this:

where .

Plugging the form you have for f(r), , into 

 gives you the following:

 Rnl(r) = r le2λre–λr

 = r leλr

Okay, should you be overjoyed? Well, no. Here’s what the wave function ψ(r) 
looks like: ψ(r) = Rnl(r) Ylm(θ, ϕ). And substituting in your form of Rnl(r) from 
this equation gives you

ψ(r) = r leλr Ylm(θ, ϕ)

That looks fine — except that it goes to infinity as r goes to infinity. You 
expect ψ(r) to go to zero as r goes to infinity, so this version of Rnl(r) = r leλr is 
clearly unphysical. In other words, something went wrong somewhere. How 
can you fix this version of f(r)?

Fixing f(r) to keep it finite
You need the solution for the radial equation to go to zero as r goes to infin-
ity. The problem of having ψ(r) go to infinity as r goes to infinity lies in the 
form you assume for f(r) in the preceding section, which is

The solution is to say that this series must terminate at a certain index, 
which you call N. N is called the radial quantum number. So this equation 
becomes the following (note that the summation is now to N, not infinity):
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For this series to terminate, aN+1, aN+2, aN+3, and so on must all be zero. The 
recurrence relation for the coefficients ak is

For aN+1 to be zero, the factor multiplying ak–1 must be zero for k = N + 1, 
which means that

Substituting in k = N + 1 gives you . And dividing by 

2 gives you . Making the substitution N + l + 1 → n, where 

n is called the principal quantum number, gives you

This is the quantization condition that must be met if the series for f(r) is to 
be finite, which it must be, physically:

Because , the equation  puts constraints 

on the allowable values of the energy.

Finding the allowed energies  
of the hydrogen atom
The quantization condition for ψ(r) to remain finite as r goes to infinity is

where . Substituting λ into the quantization-condition equation 

gives you the following:
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Now solve for the energy, E. Squaring both sides of the preceding equation 
gives you

So here’s the energy, E (Note: Because E depends on the principal quantum 
number, I’ve renamed it En):

 Physicists often write this result in terms of the Bohr radius — the orbital 
radius that Niels Bohr calculated for the electron in a hydrogen atom, r0. The 

 Bohr radius is .

And in terms of r0, here’s what En equals:

The ground state, where n = 1, works out to be about E = –13.6 eV.

Notice that this energy is negative because the electron is in a bound state — 
you’d have to add energy to the electron to free it from the hydrogen atom. 
Here are the first and second excited states:

 ✓ First excited state, n = 2: E = –3.4 eV

 ✓ Second excited state, n = 3: E = –1.5 eV

Okay, now you’ve used the quantization condition, which is

to determine the energy levels of the hydrogen atom.
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Getting the form of the radial solution  
of the Schrödinger equation
In this section, you complete the calculation of the wave functions. Go to the 
calculation of Rnl(r) (see the earlier section titled “You got the power: Putting 
together the solution for the radial equation”). So far, you know that 

, where . Therefore,

In fact, this isn’t quite enough; the preceding equation comes from solving 
the radial Schrödinger equation:

The solution is only good to a multiplicative constant, so you add such a con-
stant, Anl (which turns out to depend on the principal quantum number n and 
the angular momentum quantum number l), like this:

You find Anl by normalizing Rnl(r).

Now try to solve for Rnl(r) by just flat-out doing the math. For example, try to 
find R10(r). In this case, n = 1 and l = 0. Then, because N + l + 1 = n, you have 
N = n – l – 1. So N = 0 here. That makes Rnl(r) look like this:

And the summation in this equation is equal to , so

And because l = 0, r l = 1, so R10(r) = A10e
–λr a0, where . Therefore, 

you can also write R10(r) = A10e
–λra0 as



219 Chapter 9: Understanding Hydrogen Atoms

where r0 is the Bohr radius. To find A10 and a0, you normalize ψ100(r, θ, ϕ) to 
1, which means integrating |ψ100(r, θ, ϕ)|2d3r over all space and setting the 
result to 1.

Now d3r = r2 sinθ dr dθ dϕ, and integrating the spherical harmonics, such as 
Y00, over a complete sphere, , gives you 1. Therefore, you’re

left with the radial part to normalize:

Plugging  into  gives you

You can solve this kind of integral with the following relation:

With this relation, the equation  becomes

Therefore,

      

        

This is a fairly simple result. Because A10 is just there to normalize the result, 

you can set A10 to 1 (this wouldn’t be the case if  involved 

multiple terms). Therefore, . That’s fine, and it makes R10(r), which is
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You know that ψnlm(r, θ, ϕ) = Rnl(r) Ylm(θ, ϕ).

And so ψ100(r, θ, ϕ) becomes

Whew. In general, here’s what the wave function ψnlm(r, θ, ϕ) looks like for 
hydrogen:

where Ln–l–1
2l+1(2r/nr0) is a generalized Laguerre polynomial. Here are the first 

few generalized Laguerre polynomials:

 ✓ L0
b(r) = 1

 ✓ L1
b(r) = –r + b + 1

 ✓ 

 ✓ 

Some hydrogen wave functions
So what do the hydrogen wave functions look like? In the preceding section, 
you find that ψ100(r, θ, ϕ) looks like this:

Here are some other hydrogen wave functions:

 ✓ 

 ✓ 
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 ✓ 

 ✓ 

 ✓ 

Note that ψnlm(r, θ, ϕ) behaves like r l for small r and therefore goes to zero. 
And for large r, ψnlm(r, θ, ϕ) decays exponentially to zero. So you’ve solved the 
problem you had earlier of the wave function diverging as r becomes large — 
and all because of the quantization condition, which cut the expression for 
f(r) from an exponent to a polynomial of limited order. Not bad.

You can see the radial wave function R10(r) in Figure 9-2. R20(r) appears in 
Figure 9-3. And you can see R21(r) in Figure 9-4.

 

Figure 9-2: 
The radial 

wave  
function 
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Figure 9-3: 
R20(r).
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Figure 9-4: 
R21(r).
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Calculating the Energy Degeneracy  
of the Hydrogen Atom

Each quantum state of the hydrogen atom is specified with three quantum 
numbers: n (the principal quantum number), l (the angular momentum 
quantum number of the electron), and m (the z component of the electron’s 
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angular momentum, ψnlm[r, θ, ϕ]). How many of these states have the same 
energy? In other words, what’s the energy degeneracy of the hydrogen atom 
in terms of the quantum numbers n, l, and m?

Well, the actual energy is just dependent on n, as you see earlier in the sec-
tion titled “Finding the allowed energies of the hydrogen atom”:

where m is the mass, not the quantum number. That means the E is indepen-
dent of l and m. So how many states, |n, l, m>, have the same energy for a 
particular value of n? Well, for a particular value of n, l can range from zero to 
n – 1. And each l can have different values of m, so the total degeneracy is

The degeneracy in m is the number of states with different values of m that 
have the same value of l. For any particular value of l, you can have m values 
of –l, –l + 1, ..., 0, ..., l – 1, l. And that’s (2l + 1) possible m states for a particu-
lar value of l. So you can plug in (2l + 1) for the degeneracy in m:

And this series works out to be just n2.

So the degeneracy of the energy levels of the hydrogen atom is n2. For 
example, the ground state, n = 1, has degeneracy = n2 = 1 (which makes sense 
because l, and therefore m, can only equal zero for this state).

For n = 2, you have a degeneracy of 4:

 ✓ ψ200(r, θ, ϕ)

 ✓ ψ21–1(r, θ, ϕ)

 ✓ ψ210(r, θ, ϕ)

 ✓ ψ211(r, θ, ϕ)

Cool.
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Quantum states: Adding a little spin
You may be asking yourself — what about the spin of the electron? Right you 
are! The spin of the electron does provide additional quantum states. Up to 
now in this section, you’ve been treating the wave function of the hydrogen 
atom as a product of radial and angular parts:

ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ)

Now you can add a spin part, corresponding to the spin of the electron, 
where s is the spin of the electron and ms is the z component of the spin:

The spin part of the equation can take the following values:

 ✓ |1/2, 1/2>
 ✓ |1/2, –1/2>

Hence, ψnlm(r, θ, ϕ) now becomes ψnlmms
(r, θ, ϕ):

And this wave function can take two different forms, depending on ms,  
like this:

 ✓ 

 ✓ 

In fact, you can use the spin notation (which you use in Chapter 6), where
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For example, for |1/2, 1/2>, you can write the wave function as

And for |1/2, –1/2>, you can write the wave function as

What does this do to the energy degeneracy? If you include the spin of the 
electron, there are two spin states for every state |n, l, m>, so the degeneracy 
becomes

So if you include the electron’s spin, the energy degeneracy of the hydrogen 
atom is 2n2.

In fact, you can even add the spin of the proton to the wave function 
(although people don’t usually do that, because the proton’s spin interacts 
only weakly with magnetic fields applied to the hydrogen atom). In that case, 
you have a wave function that looks like the following:

where se is the spin of the electron, mse is the z component of the electron’s spin, 
sp is the spin of the proton, and msp is the z component of the proton’s spin.
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If you include the proton’s spin, the wave function can now take four different 
forms, depending on ms, like this:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

The degeneracy must now include the proton’s spin, so that’s a factor of four 
for each |n, l, m>:

                     

On the lines: Getting the orbitals
When you study heated hydrogen in spectroscopy, you get a spectrum con-
sisting of various lines, named the s (for sharp), p (for principal), d (for dif-
fuse), and f (for fundamental) lines. And other, unnamed lines are present as 
well — the g, h, and so on.

The s, p, d, f, and the rest of the lines turn out to correspond to different 
angular momentum states of the electron, called orbitals. The s state corre-
sponds to l = 0; the p state, to l = 1; the d state, to l = 2; the f state, to l = 3; and 
so on. Each of these angular momentum states has a differently shaped elec-
tron cloud around the proton — that is, a different orbital.

Three quantum numbers — n, l, and m — determine orbitals. For example, 
the electron cloud for the |1, 0, 0> state (1s, with m = 0) appears in Figure 9-5.
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Figure 9-5: 
The |1, 0, 0> 

state.
 

The |3, 2, 1> state (3d, with m = 2) appears in Figure 9-6.

 

Figure 9-6: 
The |3, 2, 1> 

state.
 



228 Part IV: Multiple Dimensions: Going 3D with Quantum Physics 

The |2, 1, 1> state (2p, with m = 1) appears in Figure 9-7.

 

Figure 9-7: 
The |2, 1, 1> 

state.
 

Hunting the Elusive Electron
Just where is the electron at any one time? In other words, how far is the elec-
tron from the proton? You can find the expectation value of r, that is, <r>, to 
tell you. If the wave function is ψnlm(r, θ, ϕ), then the following expression repre-
sents the probability that the electron will be found in the spatial element d3r:

|ψnlm(r, θ, ϕ)|2d3r

In spherical coordinates, d3r = r2 sinθ dr dθ dϕ. So you can write  
|ψnlm(r, θ, ϕ)|2d3r as

|ψnlm(r, θ, ϕ)|2r2 sinθ dr dθ dϕ

The probability that the electron is in a spherical shell of radius r to r + dr is  
therefore
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And because ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ), this equation becomes the  
following:

The preceding equation is equal to

or 

Spherical harmonics are normalized, so this just becomes

|Rnl(r)|2r2 dr

Okay, that’s the probability that the electron is inside the spherical shell 
from r to r + dr. So the expectation value of r, which is <r>, is

which is

This is where things get more complex, because Rnl(r) involves the Laguerre 
polynomials. But after a lot of math, here’s what you get:

where r0 is the Bohr radius: . The Bohr radius is about 5.29 × 10−11 

meters, so the expectation value of the electron’s distance from the proton is

<r> = [3n2 – l(l + 1)](2.65 × 10−11) meters
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So, for example, in the 1s state (|1, 0, 0>), the expectation value of r is equal to

<r>1s = 3(2.65 × 10−11) = 7.95 × 10−11 meters

And in the 4p state (| 4, 1, m>),

<r>4p = 46(2.65 × 10−11) = 1.22 × 10−9 meters

And that concludes this chapter, which has been a triumph for the 
Schrödinger equation.



Chapter 10

Handling Many Identical Particles
In This Chapter
▶ Looking at wave functions and Hamiltonians in many-particle systems

▶ Working with identical and distinguishable particles

▶ Identifying and creating symmetric and antisymmetric wave functions

▶ Explaining electron shells and the periodic table

H 
ydrogen atoms (see Chapter 9) involve only a proton and an electron, 
but all other atoms involve more electrons than that. So how do you 

deal with multiple-electron atoms? For that matter, how do you deal with 
multi-particle systems, such as even a simple gas?

In general, you can’t deal with problems like this — exactly, anyway. Imagine 
the complexity of just two electrons moving in a helium atom — you’d have 
to take into account the interaction of the electrons not only with the nucleus 
of the atom but also with each other — and that depends on their relative 
positions. So not only does the Hamiltonian have a term in 1/r1 for the poten-
tial energy of the first electron and 1/r2 for the second electron, but it also has 

a term in  for the potential energy that comes from the interaction of 

the two electrons. And that makes an exact wave function just about impos-
sible to find.

However, even without finding exact wave functions, you can still do a sur-
prising amount with multi-particle systems, such as deriving the Pauli exclu-
sion principle — which says, among other things, that no two electrons can 
be in the exact same quantum state. In fact, you’ll probably be surprised at 
how much you can actually say about multi-particle systems using quantum 
mechanics. This chapter starts with an introduction to many-particle systems 
and goes on to discuss identical particles, symmetry (and anti-symmetry), 
and electron shells.
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Many-Particle Systems,  
Generally Speaking

You can see a multi-particle system in Figure 10-1, where a number of par-
ticles are identified by their position (ignore spin for the moment). This sec-
tion explains how to describe that system in quantum physics terms.

 

Figure 10-1: 
A multi-
particle 
system.
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Considering wave functions  
and Hamiltonians
Begin by working with the wave function. The state of a system with many par-
ticles, as shown in Figure 10-1, is given by ψ(r1, r2, r3, ...). And here’s the proba-
bility that particle 1 is in d3r1, particle 2 is in d3r2, particle 3 is in d3r3, and so on:

The normalization of ψ(r1, r2, r3, ...) demands that
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Okay, so what about the Hamiltonian, which gives you the energy states? 
That is, what is H, where Hψ(r1, r2, r3, ...) = Eψ(r1, r2, r3, ...)? When you’re deal-
ing with a single particle, you can write this as

But in a many particle system the Hamiltonian must represent the total 
energy of all particles, not just one. 
 
The total energy of the system is the sum of the energy of all the particles 
(omitting spin for the moment), so here’s how you can generalize the 
Hamiltonian for multi-particle systems:

This, in turn, equals the following:

Here, mi is the mass of the ith particle and V is the multi-particle potential.

A Nobel opportunity: Considering  
multi-electron atoms
This section takes a look at how the Hamiltonian wave function (see the pre-
ceding section) would work for a neutral, multi-electron atom. A multi-electron  
atom, which you see in Figure 10-2, is the most common multi-particle system 
that quantum physics considers. Here, R is the coordinate of the nucleus (rel-
ative to the center of mass), r1 is the coordinate of the first electron (relative 
to the center of mass), r2 the coordinate of the second electron, and so on.
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Figure 10-2: 
A multi-

electron 
atom.

 

r
1

r
2

r
3

R

Electron 1

Electron 2
Electron 3

Nucleus

Center of Mass

If you have Z electrons, the wave function looks like ψ(r1, r2, ..., rZ, R). And the 
kinetic energy of the electrons and the nucleus looks like this:

And the potential energy of the system looks like this:

So adding the two preceding equations, here’s what you get for the total 
energy (E = KE + PE) of a multi-particle atom:

Okay, now that looks like a proper mess. Want to win the Nobel prize in phys-
ics? Just come up with the general solution to the preceding equation. As is 
always the case when you have a multi-particle system in which the particles 
interact with each other, you can’t split this equation into a system of N inde-
pendent equations.
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 In cases where the N particles of a multi-particle system don’t interact with 
each other, where you can disconnect the Schrödinger equation into a set of 
N independent equations, solutions may be possible. But when the particles 
interact and the Schrödinger equation depends on those interactions, you 
can’t solve that equation for any significant number of particles.

However, that doesn’t mean all is lost by any means. You can still say plenty 
about equations like this one if you’re clever — and it all starts with an exam-
ination of the symmetry of the situation, which I discuss next.

A Super-Powerful Tool:  
Interchange Symmetry

Even though finding general solutions for equations like the one for the total 
energy of a multi-particle atom (in the preceding section) is impossible, you 
can still see what happens when you exchange particles with each other —  
and the results are very revealing. This section covers the idea of interchange  
symmetry.

Order matters: Swapping particles  
with the exchange operator
You can determine what happens to the wave function when you swap two 
particles. Whether the wave function is symmetric under such operations 
gives you insight into whether two particles can occupy the same quantum 
state. This section discusses swapping particles and looking at symmetric 
and antisymmetric functions.

Take a look at the general wave function for N particles:

ψ(r1, r2, ..., ri, ..., rj, ..., rN)

Note: In this chapter, I talk about symmetry in terms of the location coor-
dinate, r, to keep things simple, but you can also consider other quantities, 
such as spin, velocity, and so on. That wouldn’t make this discussion any 
different, because you can wrap all of a particle’s quantum measurements — 
location, velocity, speed, and so on — into a single quantum state, which you 
can call ξ. Doing so would make the general wave function for N particles into 
this: ψ(ξ1, ξ2, ..., ξi, ..., ξj, ..., ξN). But as I said, this section just considers the 
wave function ψ(r1, r2, ..., ri, ..., rj, ..., rN) to keep things simple.
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Now imagine that you have an exchange operator, Pij, that exchanges par-
ticles i and j. In other words,

Pijψ(r1, r2, ..., ri, ..., rj, ..., rN) = ψ(r1, r2, ..., rj, ..., ri, ..., rN)

And Pij = Pji, so

Pijψ(r1, r2, ..., ri, ..., rj, ..., rN) = ψ(r1, r2, ..., rj, ..., ri, ..., rN)

 = Pjiψ(r1, r2, ..., ri, ..., rj, ..., rN)

Also, note that applying the exchange operator twice just puts the two 
exchanged particles back where they were originally, so Pij

2 = 1. Here’s what 
that looks like:

 Pij Pij ψ(r1, r2, ..., ri, ..., rj, ..., rN) = Pijψ(r1, r2, ..., rj, ..., ri, ..., rN)

 = ψ(r1, r2, ..., ri, ..., rj, ..., rN)

However, in general, Pij and Plm (where ij ≠ lm) do not commute. That is,  
Pij Plm ≠ Plm Pij (ij ≠ lm). Therefore, [Pij, Plm] ≠ 0 (ij ≠ lm). For example, say you 
have four particles whose wave function is

Apply the exchange operators P12 and P14 to see whether P12 P14 equals  
P14 P12. Here’s P14 ψ(r1, r2, r3, r4):

And here’s what P12P14 ψ(r1, r2, r3, r4) looks like:

Okay. Now take a look at P14 P12 ψ(r1, r2, r3, r4). Here’s P12 ψ(r1, r2, r3, r4):

And here’s what P14 P12 ψ(r1, r2, r3, r4) looks like:
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As you can see by comparing  and this last equation, 

P12 P14 ψ(r1, r2, r3, r4) ≠ P14 P12 ψ(r1, r2, r3, r4). In other words, the order in 
which you apply exchange operators matters.

Classifying symmetric and antisymmetric 
wave functions
Pij

2 = 1 (see the preceding section), so note that if a wave function is an 
 eigenfunction of Pij, then the possible eigenvalues are 1 and –1. That is, 
for ψ(r1, r2, ..., ri, ..., rj, ..., rN) an eigenfunction of Pij looks like

Pijψ(r1, r2, ..., ri, ..., rj, ..., rN) =  ψ(r1, r2, ...ri, ..., rj, ..., rN)  
or –ψ(r1, r2, ..., ri, ..., rj, ..., rN)

That means there are two kinds of eigenfunctions of the exchange operator:

 ✓ Symmetric eigenfunctions: Pijψs(r1, r2, ..., ri, ..., rj, ..., rN) =  
ψs(r1, r2, ..., ri, ..., rj, ..., rN)

 ✓ Antisymmetric eigenfunctions: Pijψa(r1, r2, ..., ri, ..., rj, ..., rN) =  
–ψa(r1, r2, ..., ri, ..., rj, ..., rN)

Now take a look at some symmetric and some antisymmetric eigenfunctions. 
How about this one — is it symmetric or antisymmetric?

ψ1(r1, r2) = (r1 – r2)
2

You can apply the exchange operator P12:

P12 ψ1(r1, r2) = (r2 – r1)
2

Note that because (r1 – r2)
2 = (r2 – r1)

2, ψ1(r1, r2) is a symmetric wave function; 
that’s because P12 ψ1(r1, r2) = ψ1(r1, r2).

How about this wave function?

Again, apply the exchange operator, P12:
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Okay, but because , you know that P12 ψ2(r1, r2) = ψ2(r1, r2), 

so ψ2(r1, r2) is symmetric.

Here’s another one:

Now apply P12:

How does that equation compare to the original one? Well, 

, so P12 ψ3(r1, r2) = –ψ3(r1, r2). Therefore, ψ3(r1, r2) is 

antisymmetric.

What about this one?

To find out, apply P12:

All right — how’s this compare with the original equation?

Okay — ψ4(r1, r2) is symmetric.

You may think you have this process down pretty well, but what about this 
next wave function?
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Start by applying P12:

So how do these two equations compare?

That is, ψ5(r1, r2) is neither symmetric nor antisymmetric. In other words, 
ψ5(r1, r2) is not an eigenfunction of the P12 exchange operator.

Floating Cars: Tackling Systems of  
Many Distinguishable Particles

All right, if you’ve been reading this chapter from the start, you pretty much have 
the idea of swapping particles down. Now you look at systems of particles that you 
can distinguish — that is, systems of identifiably different particles. As you see in 
this section, you can decouple such systems into linearly independent equations.

Suppose you have a system of many different types of cars floating around in 
space. You can distinguish all those cars because they’re all different — they 
have different masses, for one thing.

Now say that each car interacts with its own potential — that is, the potential 
that any one car sees doesn’t depend on any other car. That means that the 
potential for all cars is just the sum of the individual potentials each car sees, 
which looks like this, assuming you have N cars:

Being able to cut the potential energy up into a sum of independent terms 
like this makes life a lot easier. Here’s what the Hamiltonian looks like:
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Notice how much simpler this equation is than the Hamiltonian for the hydro-
gen atom which I give you here:

Note that you can separate the previous equation for the potential of all cars 
into N different equations:

And the total energy is just the sum of the energies of the individual cars:

And the wave function is just the product of the individual wave functions:

where the Π symbol is just like Σ, except it stands for a product of terms, not 
a sum, and ni refers to all the quantum numbers of the ith particle.

 As you can see, when the particles you’re working with are distinguishable 
and subject to independent potentials, the problem of handling many of 
them becomes simpler. You can break the system up into N independent 
one-particle systems. The total energy is just the sum of the individual ener-
gies of each particle. The Schrödinger equation breaks down into N different 
equations. And the wave function ends up just being the product of the wave 
functions of the N different particles.

Take a look at an example. Say you have four particles, each with a different 
mass, in a square well. You want to find the energy and the wave function of 
this system. Here’s what the potential of the square well looks like this for 
each of the four noninteracting particles:
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Here’s what the Schrödinger equation looks like:

You can separate the preceding equation into four one-particle equations:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

I’ve already solved such one-dimensional problems in Chapter 3. The energy 
levels are

And because the total energy is the sum of the individual energies is ,  
the energy in general is

So here’s the energy of the ground state — where all particles are in their 
ground states, n1 = n2 = n3 = n4 = 1:

For a one-dimensional system with a particle in a square well, the wave func-
tion is
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The wave function for the four-particle system is just the product of the indi-
vidual wave functions, so it looks like this:

For example, for the ground state, n1 = n2 = n3 = n4 = 1, you have

So as you can see, systems of N independent, distinguishable particles are 
often susceptible to solution — all you have to do is to break them up into N 
independent equations.

Juggling Many Identical Particles
When the particles in a multi-particle system are all indistinguishable, that’s 
when the real adventure begins. When you can’t tell the particles apart, how 
can you tell which one’s where? This section explains what happens.

Losing identity
Say you have a bunch of pool balls and you want to look at them classically. 
You can paint each pool ball differently, and then, even as they hurtle around 
the pool table, you’re able to distinguish them — seven ball in the corner 
pocket, and that sort of thing. Classically, identical particles retain their indi-
viduality. You can still tell them apart.

The same isn’t true quantum mechanically, because identical quantum par-
ticles really are identical — you can’t paint them, as you can pool balls.

For example, look at the scenario in Figure 10-3. There, two electrons are colliding 
and bouncing apart. Seems like keeping track of the two electrons would be easy.



243 Chapter 10: Handling Many Identical Particles

 

Figure 10-3: 
An electron 

colliding 
with another 

electron.
 

But now look at the scenario in Figure 10-4 — the electrons could’ve bounced 
like that, not like the bounce shown in Figure 10-3. And you’d never know it.

 

Figure 10-4: 
An electron 

colliding 
with another 

electron.
 

So which electron is which? From the experimenter’s point of view, you can’t 
tell. You can place detectors to catch the electrons, but you can’t determine 
which of the incoming electrons ended up in which detector, because of the 
two possible scenarios in Figures 10-3 and 10-4.

 Quantum mechanically, identical particles don’t retain their individuality in 
terms of any measurable, observable quantity. You lose the individuality of 
identical particles as soon as you mix them with similar particles. This idea 
holds true for any N-particle system. As soon as you let N identical particles 
interact, you can’t say which exact one is at r1 or r2 or r3 or r4 and so on.
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Symmetry and antisymmetry
In practical terms, the loss of individuality among identical particles means 
that the probability density remains unchanged when you exchange particles.  
For example, if you were to exchange electron 10,281 with electron 59,830, 
you’d still have the same probability that an electron would occupy d3r10,281 
and d3r59,830.

Here’s what this idea looks like mathematically (r and s are the location and 
spins of the particles):

|ψ(r1s1, r2s2, ..., risi, ..., rjsj, ..., rNsN)|2 = |ψ(r1s1, r2s2, ..., rjsj, ..., risi, ..., rNsN)|2

The preceding equation means that

ψ(r1s1, r2s2, ..., risi, ..., rjsj, ..., rNsN) = ±ψ(r1s1, r2s2, ..., rjsj, ..., risi, ..., rNsN)

 So the wave function of a system of N identical particles must be either sym-
metric or antisymmetric when you exchange two particles. Spin turns out to 
be the deciding factor:

 ✓ Antisymmetric wave function: If the particles have half-odd-integral 
spin (1/2, 3/2, and so on), then this is how the wave function looks under 
exchange of particles:

  ψ(r1s1, r2s2, ..., risi, ..., rjsj, ..., rNsN) = –ψ(r1s1, r2s2, ..., rjsj, ..., risi, ..., rNsN)

 ✓ Symmetric wave function: If the particles have integral spin (0, 1, and 
so on), this is how the wave function looks under exchange of particles:

  ψ(r1s1, r2s2, ..., risi, ..., rjsj, ..., rNsN) = ψ(r1s1, r2s2, ..., rjsj, ..., risi, ..., rNsN)

Having symmetric or antisymmetric wave functions leads to some different 
physical behavior, depending on whether the wave function is symmetric or 
antisymmetric.

 In particular, particles with integral spin, such as photons or pi mesons, are 
called bosons. And particles with half-odd-integral spin, such as electrons, pro-
tons, and neutrons, are called fermions. The behavior of systems of fermions is 
very different from the behavior of systems of bosons.

Exchange degeneracy: The steady 
Hamiltonian
The Hamiltonian, which you can represent like this

H(r1s1, r2s2, ..., risi , ..., rjsj, ..., rNsN)
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doesn’t vary under exchange of two identical particles. In other words, the 
Hamiltonian is invariant here, no matter how many identical particles you 
exchange. That’s called exchange degeneracy, and mathematically, it looks 
like this:

H(r1s1, r2s2, ..., risi, ..., rjsj, ..., rNsN) = H(r1s1, r2s2, ..., rjsj, ..., risi, ..., rNsN)

That means, incidentally, that the exchange operator, Pij, is an invariant of 
the motion because it commutes with the Hamiltonian:

[H, Pij] = 0

Name that composite: Grooving with  
the symmetrization postulate
In the earlier section titled “Symmetry and antisymmetry,” I show that the 
wave function of a system of N particles is either symmetric or antisymmetric 
under the exchange of two particles:

 ✓ Symmetric: ψ(r1s1, r2s2, ..., risi, ..., rjsj, ..., rNsN) = ψ(r1s1, r2s2, ..., rjsj, ..., risi, ..., 
rNsN)

 ✓ Antisymmetric: ψ(r1s1, r2s2, ..., risi, ..., rjsj, ..., rNsN) = –ψ(r1s1, r2s2, ..., rjsj, ..., 
risi, ..., rNsN)

This turns out to be the basis of the symmetrization postulate, which says that 
in systems of N identical particles, only states that are symmetric or antisym-
metric exist — and it says that states of mixed symmetry don’t exist.

 The symmetrization postulate also says, as observed from nature, that

 ✓ Particles with half-odd-integral states (1/2, 3/2, 5/2, ...) are fermions, and 
they have antisymmetric states under the interchange of two particles.

 ✓ Particles with integral spin (0, 1, 2, ...) are bosons, and they have sym-
metric states under the interchange of two particles.

So the wave function of N fermions is completely antisymmetric, and the 
wave function of N bosons is completely symmetric.

Determining whether a particle is a fermion or a boson may seem like an easy 
task — just look it up. Electrons, protons, and neutrons are fermions, for 
example, with half-odd-integral spin. And photons, pi mesons, and so on are 
bosons, with integral spins.



246 Part IV: Multiple Dimensions: Going 3D with Quantum Physics 

But what if the particle you’re studying is a composite particle? What if, for 
example, you have an alpha particle, which is made up of two protons and 
two neutrons? Is that a fermion or a boson?

In fact, protons and neutrons themselves are made up of three quarks, and pi 
mesons are made up of two — and quarks have spin 1/2.

Composites can be either fermions or bosons — it all depends on whether 
the spin of the composite particle ends up being half-odd-integral or integral. 
If the composite particle’s spin is 1/2, 3/2, 5/2, and so on, then the composite 
particle is a fermion. If the composite particle’s spin is 0, 1, 2, and so on, then 
the composite particle is a boson.

 In general, if the composite particle is made up of an odd number of fermions, 
then it’s a fermion. Otherwise, it’s a boson. So for example, because quarks 
are fermions and because nucleons such as protons and neutrons are made 
up of three quarks, those nucleons end up being fermions. But because pi 
mesons are made up of two quarks, they end up being bosons. The alpha 
particle, which consists of two protons and two neutrons, is a boson. You can 
even consider whole atoms to be composite particles. For example, consider 
the hydrogen atom: That atom is made up of a proton (a fermion) and an elec-
tron (another fermion), so that’s two fermions. And that makes the hydrogen 
atom a boson.

Building Symmetric and Antisymmetric 
Wave Functions

Many of the wave functions that are solutions to physical setups like the 
square well aren’t inherently symmetric or antisymmetric; they’re simply 
asymmetric. In other words, they have no definite symmetry. So how do you 
end up with symmetric or antisymmetric wave functions?

The answer is that you have to create them yourself, and you do that by 
adding together asymmetric wave functions. For example, say that you have 
an asymmetric wave function of two particles, ψ(r1s1, r2s2).

 To create a symmetric wave function, add together ψ(r1s1, r2s2) and the version 
where the two particles are swapped, ψ(r2s2, r1s1). Assuming that ψ(r1s1, r2s2) 
and ψ(r2s2, r1s1) are normalized, you can create a symmetric wave function 
using these two wave functions this way — just by adding the wave functions:
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 You can make an antisymmetric wave function by subtracting the two wave 
functions:

This process gets rapidly more complex the more particles you add, how-
ever, because you have to interchange all the particles. For example, what 
would a symmetric wave function based on the asymmetric three-particle 
wave function ψ(r1s1, r2s2, r3s3) look like? Why, it’d look like this:

And how about the antisymmetric wave function? That looks like this:

And in this way, at least theoretically, you can create symmetric and antisym-
metric wave functions for any system of N particles.

Working with Identical  
Noninteracting Particles

Working with identical noninteracting particles makes life easier because you 
can treat the equations individually instead of combining them into one big 
mess. Say you have a system of N identical particles, each of which experi-
ences the same potential. You can separate the Schrödinger equation into N 
identical single-particle equations:
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And the total energy is just the sum of the energies of the individual particles:

But now look at the wave function for the system. Earlier in the chapter (see 
“Floating Cars: Tackling Systems of Many Distinguishable Particles”), you 
consider the wave function of a system of N distinguishable particles and 
come up with the product of all the individual wave functions:

However, that equation doesn’t work with identical particles because you can’t  
say that particle 1 is in state ψ1(r1), particle 2 is in state ψ2(r2), and so on — 
they’re identical particles here, not distinguishable particles as before.

The other reason this equation doesn’t work here is that it has no inherent 
symmetry — and systems of N identical particles must have a definite sym-
metry. So instead of simply multiplying the wave functions, you have to be a 
little more careful.

Wave functions of two-particle systems
How do you create symmetric and antisymmetric wave functions for a two-
particle system? Start with the single-particle wave functions (see the earlier 
section “Building Symmetric and Antisymmetric Wave Functions”): 

 
✓

 

 
✓

 

By analogy, here’s the symmetric wave function, this time made up of two 
single-particle wave functions:
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And here’s the antisymmetric wave function, made up of the two single-parti-
cle wave functions:

where ni stands for all the quantum numbers of the ith particle.

Note in particular that ψa(r1s1, r2s2) = 0 when n1 = n2; in other words, the anti-
symmetric wave function vanishes when the two particles have the same set 
of quantum numbers — that is, when they’re in the same quantum state. That 
idea has important physical ramifications.

You can also write ψs(r1s1, r2s2) like this, where P is the permutation operator, 
which takes the permutation of its argument:

And also note that you can write ψa(r1s1, r2s2) like this:

where the term (–1)P is 1 for even permutations (where you exchange both r1s1 
and r2s2 and also n1 and n2) and –1 for odd permutations (where you exchange 
r1s1 and r2s2 but not n1 and n2; or you exchange n1 and n2 but not r1s1 and r2s2).

In fact, people sometimes write ψa(r1s1, r2s2) in determinant form like this:

Note that this determinant is zero if n1 = n2.

Wave functions of three-or-more-particle 
systems
Now you get to put together the wave function of a system of three particles 
from single-particle wave functions.
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The symmetric wave function looks like this:

And the antisymmetric wave function looks like this:

This asymmetric wave function goes to zero if any two single particles have 
the same set of quantum numbers (ni = nj, i ≠ j).

How about generalizing this to systems of N particles? If you have a system of 
N particles, the symmetric wave function looks like this:

And the antisymmetric wave function looks like this:

The big news is that the antisymmetric wave function for N particles goes to 
zero if any two particles have the same quantum numbers (ni = nj, i ≠ j). And 
that has a big effect in physics, as you see next.

It’s Not Come One, Come All:  
The Pauli Exclusion Principle

The antisymmetric wave function vanishes if any two particles in an 
N-particle system have the same quantum numbers. Because fermions are 
the type of particles that have antisymmetric wave functions, that’s the 
equivalent of saying that in a system of N particles, no two fermions can have 
the same quantum numbers — that is, occupy the same state.

That idea, which Austrian physicist Wolfgang Pauli first formulated in 1925, is 
called the Pauli exclusion principle. The topic of discussion at that time was 
the atom, and the Pauli exclusion principle applied to the electrons (a type of 
fermion), which are present in all atoms.
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 The Pauli exclusion principle states that no two electrons can occupy the 
same quantum state inside a single atom. And that result is important for the 
structure of atoms. Instead of just piling on willy-nilly, electrons have to fill 
quantum states that aren’t already taken. The same isn’t true for bosons — for 
example, if you have a heap of alpha particles (bosons), they can all be in the 
same quantum state. Not so for fermions.

There are various quantum numbers that electrons can take in an atom — n 
(the energy), l (the angular momentum), m (the z component of the angular 
momentum), and ms (the z component of spin). And using that information, 
you can construct the electron structure of atoms.

Figuring out the Periodic Table
One of the biggest successes of the Schrödinger equation, together with the 
Pauli exclusion principle (see the preceding section), is explaining the elec-
tron structure of atoms.

 The electrons in an atom have a shell structure, and they fill that structure 
based on the Pauli exclusion principle, which maintains that no two electrons 
can have the same state:

 ✓ The major shells are specified by the principal quantum number, n, cor-
responding to the distance of the electron from the nucleus.

 ✓ Shells, in turn, have subshells based on the orbital angular momentum 
quantum number, l.

 ✓ In turn, each subshell has subshells — called orbitals — which are based 
on the z component of the angular momentum, m.

So each shell n has n – 1 subshells, corresponding to l = 0, 1, 2, ..., n – 1. And in  
turn, each subshell has 2l + 1 orbitals, corresponding to m = –1, –l + 1, ..., l – 1, l.

Much as with the hydrogen atom, the various subshells (l = 0, 1, 2, 3, 4, and 
so on) are called the s, p, d, f, g, h, and so on states. So, for example, for a 
given n, an s state has one orbital (m = 0), a p state has three orbitals (m = –1, 
0, and 1), a d state has five orbitals (m = –2, –1, 0, 1, and 2), and so on.

In addition, due to the z component of the spin, ms, each orbital can contain 
two electrons — one with spin up, and one with spin down.
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So how do the electrons, as fermions, fill the structure of an atom? Electrons 
can’t fill a quantum state that’s already been taken. For atoms in the ground 
state, electrons fill the orbitals in order of increasing energy. As soon as all  
of a subshell’s orbitals are filled, the next electron goes on to the next sub-
shell; and when the subshell is filled, the next electron goes on to the next 
shell, and so on.

Of course, as you fill the different electron shells, subshells, and orbitals, you 
end up with a different electron structure. And because interactions between 
electrons form the basis of chemistry, as electrons fill the successive quan-
tum levels in various atoms, you end up with different chemical properties 
for those atoms — which set up the period (row) and group (column) organi-
zation of the periodic table.



Part V
Group Dynamics: 

Introducing 
Multiple Particles



In this part . . .

T 
his part introduces you to working with multiple par-
ticles at the same time. Now, all the particles in the 

system can interact not only with an overall potential but 
also with each other. You see how to deal with atoms 
(electron and nucleus systems) here, as well as systems of 
many atoms. After all, the whole world is made up of 
many-particle systems. Good thing quantum physics is up 
to the task.



Chapter 11

Giving Systems a Push: 
Perturbation Theory

In This Chapter
▶ Nondegenerate and degenerate perturbation theory

▶ Perturbing harmonic oscillators

▶ The Stark effect and perturbing hydrogen atoms

P 
roblems in quantum physics can become pretty tough pretty fast — 
another way of saying that, unfortunately, you just can’t find exact solu-

tions to many quantum physics problems. This is particularly the case when 
you merge two kinds of systems. For example, you may know all about how 
square wells work and all about how electrons in magnetic fields work, but 
what if you combine the two? The wave functions of each system, which you 
know exactly, are no longer applicable — you need some sort of mix instead.

Perturbation theory to the rescue! This theory lets you handle mixes of situa-
tions, as long as the interference isn’t too strong. In this chapter, you explore 
time-independent perturbation theory and degenerate and nondegenerate 
Hamiltonians. You also look at some examples that place harmonic oscilla-
tors and hydrogen atoms in electric fields.

Introducing Time-Independent 
Perturbation Theory

 The idea behind time-independent perturbation theory is that you start with a 
known system — one whose wave functions you know and whose energy levels 
you know. Everything is all set up to this point. Then some new stimulus — a 
perturbation — comes along, disturbing the status quo. For example, you may 
apply an electrostatic or magnetic field to your known system, which changes 
that system somewhat.
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Perturbation theory lets you handle situations like this — as long as the pertur-
bation isn’t too strong. In other words, if you apply a weak magnetic field to your 
known system, the energy levels will be mostly unchanged but with a correc-
tion. (Note: That’s why it’s called perturbation theory and not drastic-interference 
theory.) The change you make to the setup is slight enough so that you can cal-
culate the resulting energy levels and wave functions as corrections to the funda-
mental energy levels and wave functions of the unperturbed system.

So what does it mean to talk of perturbations in physics terms? Say that you 
have this Hamiltonian:

Here, H0 is a known Hamiltonian, with known eigenfunctions and eigenvalues, 
and λW is the so-called perturbation Hamiltonian, where λ<<1 indicates that 
the perturbation Hamiltonian is small.

Finding the eigenstates of the Hamiltonian in this equation is what solving 
problems like this is all about — in other words, here’s the problem you want 
to solve:

The way you solve this equation depends on whether the exact, known solu-
tions of H0 are degenerate (that is, several states have the same energy) or 
nondegenerate. The next section solves the nondegenerate case.

Working with Perturbations to 
Nondegenerate Hamiltonians

Start with the case in which the unperturbed Hamiltonian, H0, has nondegen-
erate solutions. That is, for every state |ϕn>, there’s exactly one energy, En, 
that isn’t the same as the energy for any other state:  (just as a 
one-to-one function has only one x value for any y). You refer to these nonde-
generate energy levels of the unperturbed Hamiltonian as E(0)

n to distinguish 
them from the corrections that the perturbation introduces, so the equation 
becomes

From here on, I refer to the energy levels of the perturbed system as En.

The idea behind perturbation theory is that you can perform expansions 
based on the parameter λ (which is much, much less than 1) to find the wave 
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functions and energy levels of the perturbed system. In this section, you go 
up to terms in λ2 in the expansions.

A little expansion: Perturbing  
the equations
To find the energy of the perturbed system, En, start with the energy of the 
unperturbed system:

En = E(0)
n + ...

Add the first-order correction to the energy, λE(1)
n:

And add the second-order correction to the energy, λ2E(2)
n, as well:

Now what about the wave function of the perturbed system, |ψn>? Start with 
the wave function of the unperturbed system, |ϕn>:

Add to it the first-order correction, λ|ψ(1)
n>:

And then add to that the second-order correction to the wave function, λ2|ψ(2)
n>:

Note that when λ→0,  becomes the 
unperturbed energy:

En = E(0)
n

And  becomes the unperturbed 

wave function:
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So your task is to calculate E(1)
n and E(2)

n, as well as ψ(1)
n and ψ(2)

n. So how do 
you do that in general? Time to start slinging some math. You start with three 
perturbed equations:

 ✓ Hamiltonian: 

 ✓ Energy levels: 

 ✓ Wave functions: 

Combine these three equations to get this jumbo equation:

Matching the coefficients  
of λ and simplifying
You can handle the jumbo equation in the preceding section by setting the 
coefficients of λ on either side of the equal sign equal to each other.

Equating the zeroth order terms in λ on either side of this equation, here’s 
what you get:

Now for the first-order terms in λ; equating them on either side of the jumbo 
equation gives you

Now equate the coefficients of λ2 in the jumbo equation, giving you

Okay, that’s the equation you derive from the second order in λ. Now you 
have to solve for E(1)

n, E
(2)

n, and so on using the zeroth-order, first-order, and 
second-order equations.
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Start by noting that the unperturbed wave function, |ϕn> isn’t going to be 
very different from the perturbed wave function, |ψn>, because the perturba-
tion is small. That means that . In fact, you can normalize |ψn> so 
that <ϕn|ψn> is exactly equal to 1:

Given that , the equation becomes

And because the coefficients of λ must both vanish, you get the following: 

This equation is useful for simplifying the math.

Finding the first-order corrections
After matching the coefficients of λ and simplifying (see the preceding sec-
tion), you want to find the first-order corrections to the energy levels and  
the wave functions. Find the first-order correction to the energy, E(1)

n, by 
multiplying  by <ϕn|:

Then the first term can be neglected and we can use our simplification above 
to write the first order energy perturbation as:

Swell, that’s the expression you use for the first-order correction, E(1)
n.

Now look into finding the first-order correction to the wave function, |ψ(1)
n>. 

You can multiply the wave-function equation by this next expression, which 
is equal to 1:
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So you have

Note that the m = n term is zero because <ϕn|ψ(1)
n> = 0.

So what is <ϕm|ψ(1)
n>? You can find out by multiplying the first-order 

correction, , by <ϕm| to give you

And substituting that into  gives you

Okay, that’s your term for the first-order correction to the wave function, 
|ψ(1)n>. From , the wave function 
looks like this, made up of of zeroth-, first-, and second-order corrections:

Ignoring the second-order correction for the moment and substituting 

 in for the first-order correction gives you this for 

the wave function of the perturbed system, to the first order:

That’s the wave function of the perturbed system in terms of the perturba-
tion. But that’s still only the first-order correction. How about the second? 
Read on.
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Finding the second-order corrections
Now find the second-order corrections to the energy levels and the wave 
functions (the preceding section covers first-order corrections). To find E(2)

n, 
multiply both sides of  
by <ϕn|:

This looks like a tough equation until you realize that <ϕn|ψ(1)
n> is equal to 

zero, so you get

Because <ϕn|ψ(2)
n> is also equal to zero, and again neglecting the first term, 

you get

E(2)
n is just a number, so you have

And of course, because <ϕn|ϕn> = 1, you have

Note that if |ψ(1)
n> is an eigenstate of W, the second-order correction equals 

zero.

Okay, so E(2)
n = <ϕn|W|ψ(1)

n>. How can you make that simpler? Well, 

from using . Substituting that equation into 

 gives you
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Now you have  and . Here’s 

the total energy with the first- and second-order corrections:  

 So from this equation, you can say

That gives you the first- and second-order corrections to the energy, accord-
ing to perturbation theory.

Note that for this equation to converge, the term in the summation must 
be small. And note in particular what happens to the expansion term if the 
energy levels are degenerate:

In that case, you’re going to end up with an E(0)
n that equals an E(0)

m, which 
means that the energy-corrections equation blows up, and this approach 
to perturbation theory is no good — which is to say that you need a dif-
ferent approach to perturbation theory (coming up later in “Working with 
Pertubations to Degenerate Hamiltonians”) to handle systems with degener-
ate energy states.

In the next section, I show you an example to make the idea of perturbing 
nondegenerate Hamiltonians more real.

Perturbation Theory to the Test: 
Harmonic Oscillators in Electric Fields

Consider the case in which you have a small particle oscillating in a harmonic 
potential, back and forth, as Figure 11-1 shows.
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Figure 11-1: 
A harmonic 

oscillator.
 

Here’s the Hamiltonian for that particle, where the particle’s mass is m, its 
location is x, and the angular frequency of the motion is ω:

Now assume that the particle is charged, with charge q, and that you apply a 
weak electric field, ε, as Figure 11-2 shows.

 

Figure 11-2: 
Applying 

an electric 
field to a 

harmonic 
oscillator.

 

3

3

The force due to the electric field in this case is the perturbation, and the 
Hamiltonian becomes

In this section, you find the energy and wave functions of the perturbed 
system and compare them to the exact solutions.
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Finding exact solutions
So what are the energy eigenvalues of the preceding Hamiltonian for the har-
monic oscillator in an electric field? First solve for the eigenvalues exactly; 
then use perturbation theory. You can solve for the exact energy eigenvalues 
by making one of the following substitutions:

 ✓ 

 ✓ 

Substituting the equation solved for x into  gives 

you

The last term is a constant, so the equation is of the form

where .  is just the Hamiltonian of 

a harmonic oscillator with an added constant, which means that the energy 
levels are simply

Substituting in for C gives you the exact energy levels:

Great — that’s the exact solution.

Applying perturbation theory
As soon as you have the exact eigenvalues for your charged oscillator (see 
the preceding section), you have something to compare the solution from 
perturbation theory to. Now you can find the energy and wave functions of 
the perturbed system.
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Energy of the charged oscillator
So what is the energy of the charged oscillator, as given by perturbation 
theory? You know that the corrected energy is given by

where λW is the perturbation term in the Hamiltonian. That is, here, λW = qεx.  
Now take a look at the corrected energy equation using qεx for λW. The first-
order correction is , which, using λW = qεx, becomes

<ϕn|qεx|ϕn> or qε<ϕn|x|ϕn>

But <ϕn|x|ϕn> = 0, because that’s the expectation value of x, and harmonic oscil-
lators spend as much time in negative x territory as in positive x territory —  
that is, the average value of x is zero. So the first-order correction to the 
energy, as given by perturbation theory, is zero.

Okay, what’s the second-order correction to the energy, as given by pertur-
bation theory? Here it is:

And because λW = qεx, you have

Cast this in terms of bras and kets (see Chapter 4), changing <ϕm| to <m| and 
|ϕn> to |n>, making the second-order energy correction into this expression:

You can decipher this step by step. First, the energy is
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That makes figuring out the second-order energy a little easier.

Also, the following expressions turn out to hold for a harmonic oscillator:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

With these four equations, you’re ready to tackle , the 

second-order correction to the energy. Omitting higher-power terms, the 
summation in this equation becomes

And substituting in the for E(0)
n – E(0)

n+1 and E(0)
n – E(0)

n–1 gives you

Now, substituting in for <n + 1|x|n> and <n – 1|x|n> gives you

or
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So the second-order correction is

Therefore, according to perturbation theory, the energy of the harmonic 
oscillator in the electric field should be

Compare this result to the earlier equation for the exact energy levels, 

 — they’re the same! In other words, perturbation 

theory has given you the same result as the exact answer. How’s that for 
agreement?

Of course, you can’t expect to hit the same answer every time using perturba-
tion theory, but this result is impressive!

Wave functions of the charged oscillator
Now figure out what the charged oscillator’s wave function looks like in 
the presence of the electric field. Here’s the wave function of the perturbed 
system, to the first order:

Using the <n| and |n> bras and kets you’re used to for harmonic oscillators, 
this becomes

Because λW = qεx, this becomes

Evidently, as with the energy, only two terms contribute, because <n|x|n> = 
0. In particular, the two terms that contribute are
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 ✓ 

 ✓ 

Note also that  and .

These four equations mean that

Note what this equation means: Adding an electric field to a quantum har-
monic oscillator spreads the wave function of the harmonic oscillator.

Originally, the harmonic oscillator’s wave function is just the standard har-
monic oscillator wave function, |ψn> = |n>. Applying an electric field spreads 
the wave function, adding a component of |n – 1>, which is proportional to 
the electric field, ε, and the charge of the oscillator, q, like this:

And the wave function also spreads to the other adjacent state, |n + 1>,  
like this:

 You end up mixing states. That blending between states means that the per-
turbation you apply must be small with respect to the separation between 
unperturbed energy states, or you risk blurring the whole system to the point 
that you can’t make any predictions about what’s going to happen.

In any case, that’s a nice result — blending the states in proportion to the 
strength of the electric field you apply — and it’s typical of the result you get 
with perturbation theory.

Okay, that’s how nondegenerate perturbation theory works. As you can see, 
it’s strongly dependent on having the energy states separate so that your 
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solution can blend them. But what happens when you have a system where 
the energies are degenerate? You take a look at that in the next section.

Working with Perturbations  
to Degenerate Hamiltonians

This section tackles systems in which the energies are degenerate. Take a 
look at this unperturbed Hamiltonian:

In other words, several states have the same energy. Say the energy states 
are f-fold degenerate, like this:

How does this affect the perturbation picture? The complete Hamiltonian, H, 
is made up of the original, unperturbed Hamiltonian, H0, and the perturbation 
Hamiltonian, Hρ:

In zeroth-order approximation, you can write the eigenfunction |ψn> as a 
combination of the degenerate states |ϕnα

>:

Note that in what follows, you assume that <ϕn|ϕn> = 1 and <ϕm|ϕn> = 0 if m 
is not equal to n. Also, you assume that the |ψn> are normalized — that is, 
<ψn|ψn> = 1.

Plugging this zeroth-order equation into the complete Hamiltonian equation, 
you get
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Now multiplying that equation by <ϕnβ
| gives you

Using the fact that <ϕn|ϕn> = 1 and <ϕm|ϕn> = 0 if m is not equal to n gives you

Physicists often write that equation as

where . And people also write that equation as

where E(1)
n = En – E(0)

n. That’s a system of linear equations, and the solution 
exists only when the determinant to this array is nonvanishing:

The determinant of this array is an fth degree equation in E(1)
n, and it has f 

different roots, E(1)
nα

. Those f different roots are the first-order corrections 
to the Hamiltonian. Usually, those roots are different because of the applied 
perturbation. In other words, the perturbation typically gets rid of the  
degeneracy.

So here’s the way you find the eigenvalues to the first order — you set up an 
f-by-f matrix of the perturbation Hamiltonian, Hρ, where Hραβ

 = <ϕnα
|Hρ|ϕnβ

>:
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Then diagonalize this matrix and determine the f eigenvalues E(1)
nα and the 

matching eigenvectors:

Then you get the energy eigenvalues to first order this way:

And the eigenvectors are

In the next section, you look at an example to clarify this idea.

Testing Degenerate Perturbation Theory: 
Hydrogen in Electric Fields

In this section, you see whether degenerate perturbation theory can handle 
the hydrogen atom, which has energy states degenerate in different angular 
momentum quantum numbers, when you remove that degeneracy by apply-
ing an electric field. This setup is called the Stark effect.
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Specifically, suppose you apply an electric field, ε, to a hydrogen atom in the 
n = 2 excited state. That state has four eigenfunctions that have the same 
energy, where the quantum numbers are |nlm> (note that you’re renaming 
these eigenfunctions |1>, |2>, and so on to make the calculation easier):

 ✓ |1> =|200>

 ✓ |2> =|211>

 ✓ |3> =|210>

 ✓ |4> =|21 – 1>

All these unperturbed states have the same energy, E = –R/4, where R is the 
Rydberg constant, 13.6 eV. But at least some of these states will have their 
energies changed when you apply the electric field.

What does the electric field, ε, cause the perturbation Hamiltonian, Hp, to 
become? Here’s the perturbation Hamiltonian:

Hp = eεz

So you have to evaluate this equation for the various states. For example, 
what is the following expression equal to, where <1| = <200| and |3> = |210>?

<1|Hp|3>

You solve for the unperturbed hydrogen wave functions in Chapter 9. In gen-
eral, here’s what the wave function ψnlm(r, θ, ϕ) looks like for hydrogen:

where Ln–l–1
2l+1(2r/nr0) is a generalized Laguerre polynomial. Doing all the 

math gives you the following result, where a0 is the Bohr radius of the atom:

The <1|Hp|3> is just one term you have to compute, of course. Here’s the full 
matrix for the perturbation Hamiltonian connecting all states, where Hpαβ

 = 
<α|Hp|β>:
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Doing the math gives you this remarkably simple result:

Diagonalizing this matrix gives you these eigenvalues — the first-order cor-
rections to the unperturbed energies:

 ✓ E(1)
1 = –3eεa0

 ✓ E(1)
2 = 0

 ✓ E(1)
3 = 3eεa0

 ✓ E(1)
4 = 0

where E(1)
1 is the first-order correction to the energy of the |1> eigenfunction, 

E(1)
2 is the first-order correction to the energy of the |2> eigenfunction, and 

so on. Adding these corrections to the unperturbed energy for the n = 2 state 
gives you the final energy levels:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

where R is the Rydberg constant. Note this result: The Stark effect removes 
the energy degeneracy in |200> and |210> (the |1> and |3> eigenfunctions), 
but the degeneracy in |211> and |21 – 1> (the |2> and |4> eigenfunctions) 
remains.
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Chapter 12

Wham-Blam! Scattering Theory
In This Chapter
▶ Switching between lab and center-of-mass frames

▶ Solving the Schrödinger equation

▶ Finding the wave function

▶ Putting the Born approximation to work

Y 
our National Science Foundation grant finally came through, and you 
built your new synchrotron — a particle accelerator. Electrons and 

anti- electrons accelerate at near the speed of light along a giant circular track 
enclosed in a vacuum chamber and collide, letting you probe the structure of 
the high-energy particles you create. You’re sitting at the console of your giant 
new experiment, watching the lights flashing and the signals on the screens 
approvingly. Millions of watts of power course through the thick cables, and 
the radiation monitors are beeping, indicating that things are working. Cool.

You’re accelerating particles and smashing them against each other to observe 
how they scatter. But this is slightly more complex than observing how pool 
balls collide. Classically, you can predict the exact angle at which colliding 
objects will bounce off each other if the collision is elastic (that is, momentum 
and kinetic energy are both conserved). Quantum mechanically, however, you 
can only assign probabilities to the angles at which things scatter.

Physicists use large particle accelerators to discover more about the struc-
ture of matter, and that study is central to modern physics. This chapter 
serves as an introduction to that field of study. You get to take a look at par-
ticle scattering on the subatomic level.

Introducing Particle Scattering  
and Cross Sections

Think of a scattering experiment in terms of particles in and particles out. 
Look at Figure 12-1, for example. In the figure, particles are being sent in a 
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stream from the left and interacting with a target; most of them continue on 
unscattered, but some particles interact with the target and scatter.

 

Figure 12-1: 
Scattering 

from a  
target.

 
Incident particles

Particles scattered at

Unscattered particles

r2dΩdA  =  

dΩ

r

( θ , φ ) 

Those particles that do scatter do so at a particular angle in three dimensions — 
that is, you give the scattering angle as a solid angle, dΩ, which equals sinθ dθ dϕ, 
where ϕ and θ are the spherical angles I introduce in Chapter 8.

The number of particles scattered into a specific dΩ per unit time is propor-
tional to a very important quantity in scattering theory: the differential cross 
section.

 The differential cross section is given by , and it’s a measure of the 

 number of particles per second scattered into dΩ per incoming flux. The inci-
dent flux, J (also called the current density), is the number of incident particles 

 per unit area per unit time. So  is

where N(ϕ, θ) is the number of particles at angles ϕ and θ.

The differential cross section  has the dimensions of area, so calling 
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it a cross section is appropriate. The cross section is sort of like the size of 
the bull’s eye when you’re aiming to scatter incident particles through a  
specific solid angle.

 

The differential cross section is the cross section for scattering to a specific 
solid angle. The total cross section, σ, is the cross section for scattering of any 
kind, through any angle. So if the differential cross section for scattering to a 
particular solid angle is like the bull’s eye, the total cross section corresponds 
to the whole target.

You can relate the total cross section to the differential cross section by inte-
grating the following:

Translating between the Center-of-Mass 
and Lab Frames

Now you can start getting into the details of scattering, beginning with a dis-
cussion of the center-of-mass frame versus the lab frame. Experiments take 
place in the lab frame, but you do scattering calculations in the center-of-mass 
frame, so you have to know how to translate between the two frames. This 
section explains how the frames differ and shows you how to relate the scat-
tering angles and cross sections when you change frames.

Framing the scattering discussion
Look at Figure 12-2 — that’s scattering in the lab frame. One particle, travel-
ing at v1lab, is incident on another particle that’s at rest (v2lab = 0) and hits it. 
After the collision, the first particle is scattered at angle θ1, traveling at v'1lab, 
and the other particle is scattered at angle θ2 and velocity v'2lab.
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Figure 12-2: 
Scattering 

in the lab 
frame.
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Now in the center-of-mass frame, the center of mass is stationary and the par-
ticles head toward each other with velocities v1c and v2c, respectively. After 
they collide, they head away from each other with velocities v'1c and v'2c, at 
angles θ and π – θ.

You have to move back and forth between these two frames — the lab frame 
and the center-of-mass frame — so you need to relate the velocities and 
angles (in a nonrelativistic way).

Relating the scattering angles  
between frames
To relate the angles θ1 and θ, you start by noting that you can connect v1lab 
and v1c using the velocity of the center of mass, vcm, this way:

v1lab = v1c + vcm

In addition, here’s what can say about the velocity of particle 1 after it col-
lides with particle 2:

v'1lab = v'1c + vcm

Now you can find the components of these velocities:

 ✓ v'1lab cosθ1 = v'1c cosθ + vcm

 ✓ v'1lab sinθ1 = v'1c sinθ
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Dividing the equation in the second bullet by the one in the first gives you

But wouldn’t it be easier if you could relate θ1 and θ by something that didn’t 
involve the velocities, only the masses, such as the following?

Well, you can. To see that, start with

And you can show that

You can also use the conservation of momentum to say what happens after 
the collision. In fact, because the center of mass is stationary in the center-of-
mass frame, the total momentum before and after the collision is zero in that 
frame, like this:

m1v1c + m2v2c = 0

Therefore

And after the collision, m1v'1c + m2v'2c = 0, which means that

Also, if the collision is elastic (and you assume all collisions are elastic in 
this chapter), kinetic energy is conserved in addition to momentum, so that 
means the following is true:
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Substituting  and  into this equation gives you

v'1c = v1c  
and v'2c = v2c

Given these two equations, you can redo  as

Dividing the magnitude of each side of  by the magnitude of 
the above equation gives you

And because you saw earlier that , substituting 

 into this equation gives you at last

Okay, that relates θ1 and θ, which is what you were trying to do. Using the 

relation , you can rewrite  as the 

following:

You can also relate θ2 and θ. You can show that , which, 
using a little trig, means that
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Okay, now you’ve related the angles between the lab and center-of-mass 
frames. How about relating the cross sections in the two frames? That’s in 
the next section.

Translating cross sections  
between the frames
The preceding section relates θ1 and θ and θ2 — the angles of the scattered 
particles in the lab frame and the center-of-mass frame. Now how about relat-
ing the differential cross section — the bull’s eye when you’re aiming to scat-
ter the particles at a particular angle — between the lab and center-of-mass 
frames?

The differential dσ (total cross section) is infinitesimal in size, and it stays the 
same between the two frames. But the angles that make up dΩ, the scattering 
angle, vary when you translate between frames. You get to take a look at how 
that works now, relating the lab differential cross section:

to the center-of-mass differential cross section:

In the lab frame, dΩ1 = sinθ1 dθ1 dϕ1. And in the center-of-mass frame, dΩ = 
sinθ dθ dϕ. Because dσlab = dσcm, the following equation is true:

Putting that equation with the equations for the lab frame and the center-of-
mass frame, you have

Because you have cylindrical symmetry here, ϕ = ϕ1, so
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You’ve already seen that , so 

. Therefore

You can also show that

Trying a lab-frame example with particles 
of equal mass
Say you have two particles of equal mass colliding in the lab frame (where 
one particle starts at rest). You want to show that the two particles end up 
traveling at right angles with respect to each other in the lab frame.

Note that if m1 = m2, then  gives tan(θ1) = 

tan(θ/2), so θ1 = θ/2. And 

becomes
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Note also that tan(θ2) = cot(θ/2), or tan(θ2) = tan(π/2 – θ/2).

You know that θ1 = θ/2, and tan(θ2) = tan(π/2 – θ/2) tells you that the following is 
true:

θ2 = π/2 – θ/2

So substituting θ1 = θ/2 into the preceding equation gives you

	 θ2 = π/2 – θ1

	θ2 + θ1 = π/2

Therefore, θ2 and θ1, the angles of the particles in the lab frame after the colli-
sion, add up to π/2 — which means θ2 and θ1 are at right angles with respect to 
each other. Cool.

In this case, you can use the relations you’ve already derived to get these 
relations in the special case where m1 = m2:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

Tracking the Scattering Amplitude  
of Spinless Particles

In the earlier section “Translating between the Center-of-Mass and Lab 
Frames,” you see how to translate from the lab frame to the center-of-mass 
frame and back again, and those translations work classically as well as in 
quantum physics (as long as the speeds involved are nonrelativistic). Now 
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you look at the elastic scattering of two spinless nonrelativistic particles 
from the time-independent quantum physics point of view.

Assume that the interaction between the particles depends only on their  
relative distance, |r1 – r2|. You can reduce problems of this kind to two 
decoupled problems (see Chapter 9 for details). The first decoupled equation 
treats the center of mass of the two particles as a free particle, and the 

second equation is for an effective particle of mass .

The first decoupled equation, the free-particle equation of the center of mass, 
is of no interest to you in scattering discussions. The second equation is the 

one to concentrate on, where μ	= :

You can use the preceding equation to solve for the probability that a par-
ticle is scattered into a solid angle dΩ — and you give this probability by the 

differential cross section, .

 In quantum physics, wave packets represent particles. In terms of scattering, 
these wave packets must be wide enough so that the spreading that occurs 
during the scattering process is negligible (however, the wave packet can’t be 
so spread that it encompasses the whole lab, including the particle detectors). 
Here’s the crux: After the scattering, the wave function breaks up into two 
parts — an unscattered part and a scattered part. That’s how scattering works 
in the quantum physics world.

The incident wave function
Assume that the scattering potential V(r) has a very finite range, a. Outside 
that range, the wave functions involved act like free particles. So the incident 
particle’s wave function, outside the limit of V(r) — that is, outside the range 
a from the other particle — is given by this equation, because V(r) is zero:

where .

The form  is the equation for a plane wave, so ϕinc(r) is 
ϕinc(r) = Aeik0·r, where A is a constant and k0 · r is the dot product between the 
incident wave’s wave vector and r. In other words, you’re treating the inci-
dent particle as a particle of momentum .
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The scattered wave function
After the scattering of the spinless particles, the nonscattered wave function 
isn’t of much interest to you, but the scattered wave function is. Although the 
incident wave function has the form ϕinc(r) = Aeik0·r, the scattered wave func-
tion has a slightly different form:

The f(ϕ, θ) part is called the scattering amplitude, and your job is to find it. 
Here, A is a normalization factor and

where E is the energy of the scattered particle.

Relating the scattering amplitude  
and differential cross section
The scattering amplitude of spinless particles turns out to be crucial to 
understanding scattering from the quantum physics point of view. To see 
that, take a look at the current densities, Jinc (the flux density of the incident 
particle) and Jsc (the current density for the scattered particle):

 ✓ 

 ✓ 

Inserting your expressions for ϕinc and ϕsc into these equations gives you the 
following, where f(ϕ, θ) is the scattering amplitude:

 ✓ 

 ✓ 

Now in terms of the current density, the number of particles dN(ϕ, θ) scat-
tered into dΩ and passing through an area dA = r2dΩ is

dN(ϕ, θ) = Jscr
2dΩ
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Plugging in  into the preceding equation gives you

Also, recall from the beginning of the chapter that . You get

And here’s the trick — for elastic scattering, k = k0, which means that this is 
your final result:

 The problem of determining the differential cross section breaks down to 
determining the scattering amplitude.

Finding the scattering amplitude
To find the scattering amplitude — and therefore the differential cross  
section — of spinless particles, you work on solving the Schrödinger equation: 

. You can also write this as

You can express the solution to that differential equation as the sum of a 
homogeneous solution and a particular solution:

ψ(r) = ψh(r) + ψp(r)

The homogeneous solution satisfies this equation:
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And the homogeneous solution is a plane wave — that is, it corresponds to 
the incident plane wave:

To take a look at the scattering that happens, you have to find the particular 
solution. You can do that in terms of Green’s functions, so the solution to 

 is

where .

This integral breaks down to

You can solve the preceding equation in terms of incoming and/or outgoing 
waves. Because the scattered particle is an outgoing wave, the Green’s func-
tion takes this form:

You already know that

So substituting  into the preceding equation gives you

Wow, that’s an integral equation for ψ(r) , the wave equation — how do you 
go about solving this whopper? Why, you use the Born approximation, of 
course.
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The Born Approximation: Rescuing  
the Wave Equation

Okay, your dilemma is to solve the following equation for ψ(r), where ϕinc = 
Aeik0r:

You can do that with a series of successive approximations, called the Born 
approximation (this is a famous result). To start, the zeroth order Born 
approximation is just ψ0(r) = ϕinc(r). And substituting this zeroth-order term, 
ψ0(r), into the first equation in this section gives you the first-order term:

which, using ψ0 (r) = ϕinc (r)  gives you

You get the second-order term by substituting this equation into 

:

And substituting  into the  
preceding equation gives you



289 Chapter 12: Wham-Blam! Scattering Theory

The pattern continues for the higher terms, which you can find by plugging 
lower-order terms into higher ones.

Exploring the far limits  
of the wave function
Now that you’ve used the Born approximation (see the preceding section), 
take a look at the case where r is large — in scattering experiments, r >> r', 
where r is the distance from the target to the detector and r' is the size of 

the detector. What happens to , the 

exact integral equation for the wave function, when r >> r'? Here’s the answer:

Because r >> r', you can say that k|r – r'| ≈ kr – k · r', where k · r' is the dot 
product of k and r' (k is the wave vector of the scattered particle). And

Using the last two equations in   
gives you

And here

The differential cross section is given by , which in this 
case becomes
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Using the first Born approximation
If the potential is weak, the incident plane wave is only a little distorted and 
the scattered wave is also a plane wave. That’s the assumption behind the 
first Born approximation, which you take a look at here. So if you make the 
assumption that the potential is weak, you can determine from the equation 

 that

Okay, so what is f(θ, ϕ)? Well

And this equals the following, where q = k0 – k:

And because , you have

When the scattering is elastic, the magnitude of k is equal to the magnitude 
of k0, and you have

q = |k0 – k| = 2k sin(θ/2)

where θ is the angle between k0 and k.

In addition, if you say that V(r) is spherically symmetric, and you can choose 
the z axis along q, then q . r' = qr' cosθ', so

That equals
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You know that , so

You’ve come far in this chapter — from the Schrödinger equation all the 
way through the Born approximation, and now to the preceding equation for 
weak, spherically symmetric potentials. How about you put this to work with 
some concrete numbers?

Putting the Born approximation to work
In this section, you find the differential cross section for two electrically 
charged particles of charge Z1e and Z2e. Here, the potential looks like this:

So here’s what the differential cross section looks like in the first Born 
approximation:

And because , you know that

And because q = 2ksin(θ/2), the following is true:

where E is the kinetic energy of the incoming particle: .

Now get more specific; say that you’re smashing an alpha particle, Z1 = 4, 
against a gold nucleus, Z2 = 79. If the scattering angle in the lab frame is 60°, 
what is it in the center-of-mass frame?
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The ratio of the particles' mass in this case, m1/m2, is 0.02, so the scattering 
angle in the center-of-mass frame, θ, is the following, where θlab = 60°:

Solving that equation for θ gives you θ = 61°. So what’s the cross section for 
this scattering angle? Take a look:

Plugging in the numbers if the incident alpha particle’s energy is 8 MeV  
gives you the following:

That’s the size of the target — the cross section — you have to hit to create 
the scattering angle seen.



Part VI
The Part of Tens



In this part . . .

I 
 let quantum physics off the leash in this part, and it 
goes wild. You get to see the ten best online tutorials 

here, as well as ten major triumphs of quantum physics. 
Researchers created quantum physics because of the 
need to handle issues such as the wave-particle duality, 
the uncertainty principle, and the photoelectric effect, 
and you relive those triumphs here.



Chapter 13

Ten Quantum Physics Tutorials 
In This Chapter
▶ Understanding basic concepts and equations

▶ Viewing illustrations and animations

W 
hen scientists start mixing talk of dice, billiard balls, and a possibly 
undead cat-in-a-box, you know you’re dealing with a challenging sub-

ject. Luckily, you can find plenty of online tutorials, some of them featuring 
animation, to help you wrap your brain around quantum physics. This chap-
ter presents a good starter list.

An Introduction to Quantum Mechanics
http://legacyweb.chemistry.ohio-state.edu/betha/qm

What is a wave function? What is an orbital?: An Introduction to Quantum 
Mechanics comes from Neal McDonald, Midori Kitagawa-DeLeon, Anna 
Timasheva, Heath Hanlin, Zil Lilas, and Sherwin J. Singer at The Ohio State 
University. This site includes tutorials on probability, particles versus waves, 
wave functions, and more, including Shockwave-based sound (though if you 
don’t have Shockwave installed, that’s not a problem).

Quantum Mechanics Tutorial
www.gilestv.com/tutorials/quantum.html

This cool tutorial is one of the Flash-animated Modern Physics Tutorials by 
Giles Hogben. Extensively illustrated, this tutorial probes questions such 
as wave-particle duality and offers a good general introduction to quantum 
physics.
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Grains of Mystique: Quantum  
Physics for the Layman

www.faqs.org/docs/qp

This site provides good historical and experimental background info — and 
they’ve documented their sources and made some attempts at peer review.

Quantum Physics Online Version 2.0
www.quantum-physics.polytechnique.fr/index.html

This is a cool set of programs that run in your browser, giving simulations 
of various quantum physics experiments. It’s by Manuel Joffre, Jean-Louis 
Basdevant, and Jean Dalibard of the École Polytechnique in France. Look for 
information on wave mechanics, quantization, quantum superposition, and 
spin 1/2.

Todd K. Timberlake’s Tutorial
facultyweb.berry.edu/ttimberlake/qchaos/qm.html

This tutorial is by Todd K. Timberlake, assistant professor of the Department 
of Physics, Astronomy, & Geology of Berry College in Georgia. It’s a fairly 
brief but well-written introduction to the ideas of quantum mechanics.

Physics 24/7’s Tutorial
www.physics247.com/physics-tutorial/quantum-physics-
billiards.shtml

This is a text-based tutorial from Physics 24/7. It includes material on quanta, 
the uncertainty principle, and quantum tunneling (as well as some ads).
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Stan Zochowski’s PDF Tutorials
www.cmmp.ucl.ac.uk/~swz/courses/SM355/SM355.html

Stan Zochowski, from the department of Physics & Astronomy at University 
College London, put together these PDF-based tutorials on quantum phys-
ics. These are tutorial handouts for a Quantum Mechanics course at the 
University College, and they serve as an excellent introduction to quantum 
physics.

Quantum Atom Tutorial
www.colorado.edu/physics/2000/quantumzone/index.html

This is a fun, cartoon-centric tutorial on the quantum nature of the atom from 
the University of Colorado Physics 2000 project.

College of St. Benedict’s Tutorial
www.physics.csbsju.edu/QM/Index.html

This is a comprehensive quantum physics tutorial from the College of St. 
Benedict. It’s a good, more serious, text and equations-based tutorial with 
plenty of illustrations.

A Web-Based Quantum  
Mechanics Course

electron6.phys.utk.edu/qm1/Modules.htm

This one’s from the University of Tennessee, and it’s an extensive online 
course in quantum physics. It includes modules on square potentials, har-
monic oscillators, angular momentum, spin, and so on.
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Chapter 14

Ten Quantum Physics Triumphs
In This Chapter
▶ Explaining unexpected results

▶ Identifying characteristics of the quantum world

▶ Developing new models

Q 
uantum physics has been very successful in explaining many physical 
phenomena, such as wave-particle duality. In fact, quantum physics 

was created to explain physical measurements that classical physics couldn’t 
explain. This chapter is about ten triumphs of quantum physics, and it points 
you to resources on the Web that examine those triumphs for further  
information.

Wave-Particle Duality
Is that particle a wave? Or is that wave a particle? That’s one of the questions 
that quantum physics was created to solve, because particles exhibited wave-
like properties in the lab, whereas waves exhibited particle-like properties. 

These Web sites offer more insight:

 ✓ www.gilestv.com/tutorials/quantum.html

 ✓ www.physics247.com/physics-tutorial/quantum-physics-
billiards.shtml

The Photoelectric Effect
Another founding pillar of quantum physics was explaining the photoelectric 
effect, in which experimenters shone light on a metal. No matter how strong 
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the light, the energy of ejected electrons from the metal didn’t rise. It turns 
out that the energy of electrons goes up with the frequency of the light, not 
its intensity — which gives support to the light as a stream of discrete pho-
tons theory.

For more info on the photoelectric effect, check out www.gilestv.com/
tutorials/quantum.html.

Postulating Spin
The Stern-Gerlach experiment results couldn’t be explained without pos-
tulating spin, another triumph of quantum physics. This experiment sent 
electrons through a magnetic field, and the classical prediction is that the 
electron stream would create one spot of electrons on a screen — but there 
were two (corresponding to the two spins, up and down).

This Web site has more info: electron6.phys.utk.edu/qm1/modules/
m9/spin.htm.

Differences between Newton’s  
Laws and Quantum Physics

In classical physics, bound particles can have any energy or speed, but that’s 
not true in quantum physics. And in classical physics, you can determine 
both the position and momentum of particles exactly, which isn’t true in 
quantum physics (thanks to the Heisenberg uncertainty principle). And in 
quantum physics, you can superimpose states on each other, and have par-
ticles tunnel into areas that would be classically impossible.

You can find a nice discussion of the differences between classical and 
quantum physics at facultyweb.berry.edu/ttimberlake/qchaos/
qm.html.

Heisenberg Uncertainty Principle
One of the triumphs of quantum physics is the Heisenberg uncertainty princi-
ple: Heisenberg theorized that you can’t simultaneously measure a particle’s 
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position and momentum exactly. This is one of the central theories that has 
destroyed classical physics.

Here’s where you can find one of the best Web discussions on this topic: 
www.physics247.com/physics-tutorial/quantum-physics- 
billiards.shtml.

Quantum Tunneling
How can particles go where, classically, they don’t have enough energy to 
go? For example, how can an electron with energy E go into an electrostatic 
field where you need to have more than energy E to penetrate? The answer 
was postulated with quantum tunneling, and you can find more information 
about that at

www.physics247.com/physics-tutorial/quantum-physics- 
billiards.shtml.

Discrete Spectra of Atoms
Modeling the quantized nature of atoms and orbitals is another triumph of 
quantum physics. It turns out that electrons can’t have any old energy in an 
atom, but are only allowed particular quantized energy levels — and that was 
one of the foundations of quantum physics.

For a lot more on the topic, visit www.colorado.edu/physics/2000/
quantumzone/index.html.

Harmonic Oscillator
Quantizing harmonic oscillators on the micro level was another triumph of 
quantum physics. Classically, harmonic oscillators can have any energy — 
but not quantum mechanically. And guess which one was right?

Read all about it here:

 ✓ www.physics.csbsju.edu/QM/Index.html

 ✓ electron6.phys.utk.edu/qm1/modules/module8.htm



302 Part VI: The Part of Tens 

Square Wells
Like harmonic oscillators, quantizing particles bound in square wells at the 
micro level was another triumph for quantum physics. Classically, particles 
in square wells can have any energy, but quantum physics says you can only 
have certain allowed energies.

There’s plenty on the Web about it, including these two good treatments:

 ✓ www.physics.csbsju.edu/QM/Index.html

 ✓ electron6.phys.utk.edu/qm1/modules/module2.htm

Schrödinger’s Cat
Schrödinger’s Cat is a thought experiment that details some problems that 
arise in the macro world from thinking of the spin of electrons as completely 
non-determined until you measure them. For example, if you know the spin of 
one of a pair of newly-created electrons, you know the other has to have the 
opposite spin. So if you separate two electrons by light years and then mea-
sure the spin of one electron, does the other electron’s spin suddenly snap 
to the opposite value — even at a distance that would take a signal from the 
first electron years to cover? Tricky stuff! 

For more, take a look at www.gilestv.com/tutorials/quantum.html.



Glossary

H 
ere’s a glossary of common quantum physics terms: 

amplitude: The maximum amount of displacement of an oscillating particle.

angular momentum: The product of the distance a particle is from a certain 
point and its momentum measured with respect to the point.

annihilation operator: An operator that lowers the energy level of an eigen-
state by one level.

anti-Hermitian: An operator whose Hermitian adjoint is the same as the 
original operator, but with a minus sign; in other words, an operator is anti-
Hermitian if A† = –A. See also Hermitian operator.

black body: A body that absorbs all radiation and radiates it all away.

Bohr radius: The average radius of an electron’s orbit in a hydrogen atom, 
about 10–10 meters.

bound state: A state in which a particle isn’t free to travel to infinity.

bosons: Particles with integer spins, including photons, pi mesons, and so on.

bra-ket notation: Abbreviating the matrix form of a state vector as a ket, 
or |ψ>, and abbreviating the ket’s complex conjugate, or bra, as <ψ|.

center-of-mass frame: In scattering theory, the frame in which the center of 
mass is stationary and the particles head toward each other and collide. See 
also lab frame.

central potential: A spherically symmetrical potential.

commute: Two operators commute with each other if their commutator is 
equal to zero. The commutator of operators A and B is [A, B] = AB – BA.

complex conjugate: The number you get by negating the imaginary part of a 
complex number. The * symbol indicates a complex conjugate.
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Compton effect: An increase of wavelength, depending on the scattering 
angle, that occurs after incident light hits an electron at rest.

conservation of energy: The law of physics that says the energy of a closed 
system doesn’t change unless external influences act on the system.

creation operator: An operator that raises the energy level of an eigenstate 
by one level.

current density: See incident flux.

electron volts (eV): The amount of energy one electron gains falling through 
1 volt.

diagonalize: Writing a matrix so that the only nonzero elements appear along 
the matrix’s diagonal.

differential cross section: In scattering theory, the cross section for scatter-
ing a particle to a specific solid angle; it’s like a bull’s-eye.

Dirac notation: See bra-ket notation.

eigenvalue: A complex constant that represents the change in magnitude of a 
vector when you act on that vector with an operator.

eigenvector: A vector that changes in magnitude but not direction after you 
apply an operator.

elastic collision: A collision in which kinetic energy is conserved.

electric field: The force on a positive test charge per Coulomb due to other 
electrical charges.

electron: A negatively charged particle with half-integer spin.

emissivity: A property of a substance showing how well it radiates.

energy: The ability of a system to do work.

energy degeneracy: The number of states that have the same energy.

energy well: See potential well.

expectation value: The average value an operator will return. 
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fermions: Particles with half-integer spin, including electrons, protons, neu-
trons, quarks, and so on.

frequency: The number of cycles of a periodic occurrence per second.

Hamiltonian: An operator for the total energy of a particle, both kinetic and 
potential.

Heisenberg uncertainty principle: See uncertainty principle.

Hermitian adjoint: The complex conjugate of a number, the bra correspond-
ing to a ket vector or the ket corresponding to a bra vector, or the conjugate 
transpose A† of an operator A.

Hermitian operator: Operators that are equal to their Hermitian adjoints; in 
other words, an operator is Hermitian if A† = A.

incident flux: The number of incident particles per unit area per unit time.

inelastic collision: A collision in which kinetic energy isn’t conserved.

intensity (wave): The time-averaged rate of energy transmitted by a wave per 
unit of area.

Joule: The MKS unit of energy — one Newton-meter.

ket: See bra-ket notation.

kinetic energy: The energy of an object due to its motion.

lab frame: In scattering theory, the frame in which one particle is incident on 
a particle at rest and hits it. See also center-of-mass frame.

Laplacian: An operator, represented by ∇2, that you use to find the 
Hamiltonian.

magnetic field: The force on a moving positive test charge, per Coulomb, 
from magnets or moving charges.

magnitude: The size or length associated with a vector (vectors are made up 
of a direction and a magnitude).

mass: The property that makes matter resist being accelerated.

momentum: The product of mass times velocity, a vector.

MKS system: The measurement system that uses meters, kilograms, and 
 seconds.
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Newton: The MKS unit of force — one kilogram-meter per second2.

normalized function: A function in which the probability adds up to 1.

orbitals: Different angular momentum states of an electron, represented as 
subshells in atomic structure.

orthogonal: Two kets, |ψ> and |ϕ>, for which <ψ|ϕ> = 0.

orthonormal: Two kets, |ψ> and |ϕ>, that meet the following conditions: 
<ψ|ϕ> = 0; < ψ|ψ> = 1; and <ϕ|ϕ> = 1.

oscillate: To move or swing side to side regularly.

pair annihilation: The conversion of an electron and positron into pure light.

pair production: The conversion of a high-powered photon into an electron 
and positron.

particle: A discrete piece of matter.

Pauli exclusion principle: The idea that no two electrons can occupy the 
same state in a single atom.

period: The time it takes for one complete cycle of a repeating event.

perturbation: A stimulus mild enough that you can calculate the resulting 
energy levels and wave functions as corrections to the fundamental energy 
levels and wave functions of the unperturbed system.

photoelectric effect: A result in which the kinetic energy of electrons emitted 
from a piece of metal depends only on the frequency — not the intensity — 
of the incident light.

photon: A quantum of electromagnetic radiation. An elementary particle that 
is its own antiparticle.

pi meson: A subatomic particle that helps hold the nucleus of an atom together.

Planck’s constant: A universal constant, h, that describes the relationship 
between the energy and frequency of a photon. It equals 6.626 × 10–34 Joule-
seconds.

positron: A positively charged anti-electron.

potential barrier: A potential step of limited extent; an electron may be able 
to tunnel through the barrier and come out the other side.
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potential energy: An object’s energy because of its position when a force is 
acting on it or its internal configuration.

potential step: A region in which the energy potential forms a stair shape; 
a particle striking the step may be reflected or transmitted.

potential well: A region in which there’s a dip in the energy potential thresh-
old; particles without enough energy to overcome the barrier can become 
trapped in the well, unable to convert the potential energy to kinetic.

power: The rate of change in a system’s energy.

probability amplitude: The square root of the probability that a particle will 
occupy a certain state.

probability density: The likelihood that a particle will occupy a particular 
position or have a particular momentum.

quantized: Coming in discrete values.

quark: Particles that combine with antiquarks to form protons, neutrons, and 
so on.

radian: The MKS unit of angle — 2π radians are in a circle.

radiation: A physical mechanism that transports heat and energy as electro-
magnetic waves.

scalar: A simple number (without a direction, which a vector has).

Schrödinger equation: An equation that tells us how the wave function 
(which describes the probable locations of particles like electrons) changes 
over time.

simple harmonic motion: Repetitive motion where the restoring force is pro-
portional to the displacement.

spherical coordinates: Coordinates that indicate location using two angles 
and the length of a radius vector.

spin: The intrinsic angular momentum of an electron, classified as up or down.

synchrotron: A type of circular particle accelerator.

state vector: A vector that gives the probability amplitude that particles will 
be in their various possible states.



308 Quantum Physics For Dummies, Revised Edition 

threshold frequency: If you shine light below this frequency on metal, no 
electrons are emitted.

total cross section: In scattering theory, the cross section for any kind of par-
ticle scattering, through any angle.

tunneling: The phenomenon where particles can get through regions that 
they’re classically forbidden to go.

ultraviolet catastrophe: The failure of the Rayleigh-Jeans Law to explain 
black-body radiation at high frequencies.

uncertainty principle: A principle that says it’s impossible to know an 
object’s exact momentum and position.

vector: A mathematical construct that has both a magnitude and a direction.

velocity: The rate of change of an object’s position, expressed as a vector 
whose magnitude is speed.

volt: The MKS unit of electrostatic potential — one Joule per Coulomb.

wave: A traveling energy disturbance.

wavelength: The distance between crests or troughs of a wave.

wave-particle duality: The observation that light has properties of both 
waves and particles, depending on the experiment.

wave packet: A collection of wave functions such that the wave functions 
interfere constructively at one location and interfere destructively (go to 
zero) at all other locations.

work: Force multiplied by the distance over which that force acts.
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Schrödinger equation, 61–62
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x, y, and z equations, 173–174

frequency, threshold, 15

• G •
gamma rays, 18
Gaussian wave packet, 88–89
Gerlach, Walther, 157
Goudsmit, Samuel A., 158
gradient operators, 32
Grains of Mystique: Quantum Physics for the 

Layman, 296
gravitons, 161
ground state

eigenstates, 102–103
quantum mechanical harmonic  

oscillator, 102

• H •
Hamiltonian operator

defined, 32
degenerate Hamiltonians, 269–273
exchange degeneracy, 244–245
in matrix and continuous  

representations, 51
multi-particle systems, 233
nondegenerate Hamiltonians, 256–262
3D Schrödinger equation, 170–171

harmonic oscillators
annihilation operator, 94
creation operator, 94
defined, 91
eigenstates, 96–107
in electric fields, 262–269
Hamiltonians, 91–94
Hooke’s law, 92

interpreting with matrix representation, 
108–113

isotropic, 201–203
online research resources, 301
3D, 184–187
using Java code to solve Schrödinger 

equation numerically, 114–124
Heisenberg, Werner, 20–21
Heisenberg uncertainty principle, 20–21, 

38–42, 300–301
hermite polynomials, 105–106
Hermitian adjoint (adjoint; Hermitian 

conjugate)
overview, 35–36
writing as bras, 28–29

Hilbert Space, 24–26
Hooke’s law, 92
hydrogen atom

calculating energy degeneracy of, 222–228
centimeter-gram-second system, 207
in electric fields, 271–273
electrons, 228–230
electrostatic potential energy, 207
finding allowed energies of, 216–217
first excited state, 217
kinetic energy, 206–207
orbitals, 226–227
overview, 205
potential energy, 207
quantum states, 224–226
radial Schrödinger equation, general 

discussion, 211–215
radial Schrödinger equation, principal 

quantum number, 216
radial Schrödinger equation, radial 

quantum number, 215
Schrödinger equation, for y (R), 210–211
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